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ABSTRACT:  Fractality of the Denwa drainage basins is shown by 

their tiling properties with sub basins and inter basin areas. Drainage 

basin forms projected on the two-dimensional plane have mathematical 

properties, similar to those of one-dimensional quasicrystals. Fractal 

drainage basins are divided into self-similar sub basins and inter basin 

areas to the infinitesimal limits of their sizes while one-dimensional 

quasicrystals are divided into segments of two lengths, namely, shorter 

ones and longer ones also to their infinitesimal limit. The law of stream 

numbers is expressed by a recurrence formula consisting of three 
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terms. The total number of segments in the line of a quasicrystal is also 

given by a recurrence formula. In either case, one of the coefficients of 

them in the recurrence formula is given with the product of solutions of 

the quadratic equation and the other one with the sum of the solutions. 

The stability of quasicrystals is discussed by using the concept of the 

Helmholtz free energy. Fractality of drainage basins is explained based 

on a statistical thermodynamics regarding potential energy expenditure 

of water in streams. The statistics to explain fractality of drainage 

basins are peculiar being different from BE, FD and MB statistics. It 

should be constructed as the nest of a most probable state and so forth. 

___________________________________________________________________________________ 

 

A considerable part of the Denwa river of the Pachmarhis (Satpura) rift system 

originated in two main series of fractures, following the same lines but separated by a 

prolonged period of intermittent continental uplift and regional planation. In the first place, 

early triassic movements, following in many cases still earlier lines of weakness, gave rise to 

widespread large-scale undulations associated with pronounced trough-faulting and block-

faulting. (Dongre N.L. 1999) Projections of drainage networks on the two-dimensional plane 

have been recognized as possessing self- similar structures over a considerable range of 

scales. This self- similarity is an important basis on which drainage networks are regarded as 

fractals (Mandelbrot, 1977, 1983). There are numerous studies made by applying fractal 

geometry to analysis of drainage network composition. Such studies are synthesized by 

Rodoriguez- Iturbe and Rinaldo (1997). Many works are done by regarding Horton's law of 

stream numbers as expressing self-similarity of drainage networks (e. g. Tarboton et al., 1988; 

La Barbera and Rosso, 1S89; Marani et al., 1991; Rosso et al., 1991; Liu, 1992). However, it 

has been proved that Horton's law of stream numbers is available in strict sense to express 

only self- similarity of structurally Hortonian networks (Tokunaga, 1966, 1975; Smart, 1967). 

Furthermore Horton's laws (including laws of stream lengths and basin areas) are inadequate 

in that they do not admit space- filling networks as shown by Tarboton (1996). Nevertheless 

we can use Horton's law of stream numbers redefining it as the asymptotic law of self- similar 

networks. 

 

The space-filling problem is the tiling problem. The latter problem has been extensively 

studied in the field of crystallography (e. g. Takeuchi, 1992) while the former one discussed 

rather in that of drainage basin geomorphology in connection with fractal geometry (e. g. 

Nikora et al., 1996; Rodoriguez- Iturbe and Rinaldo, 1997; Cui et ah, 1999; Tokunaga, 2000). 

The stability of quasicrystals is discussed by using the concept of the Helmholtz free energy 

(e. g. Takeuchi, 1992). Many trials to explain drainage basin structures by applying concepts 

of thermodynamics have been made since Murray (1926). Such studies are also reviewed by 

Rodoriguez- Iturbe and Rinaldo (1997). The author, however, considers that they are not 

completely successful. 

 

I deal with problems much more complex than those in crystallography. I, however, find 

mathematical formulas with the expressions common to tiling properties of drainage basins 

and quasicrystals which satisfy fractality of these objects considered to have natures 

physically different to each other. This suggests that there is a possibility to settle a firm 

theoretical basis for explanation of structures of drainage basins. This paper will show the 

mathematical natures common to these at first. Then it will be shown that the stability of 

drainage networks, which have natures more complex than those of quasicrystals, is explained 

by introducing a peculiar statistics different from Bose- Einstein (BE), Fermi- Dirac (FD) and 

Maxwell- Boltzmann (MB) ones. This means that I have to advance thermodynamics itself to 

settle a theoretically firm basis to fractality of drainage basins. 

Recurrence formulas for quasicrystals and self-similar drainage basins 

A simple model is used to demonstrate self similarity of quasicrystals in books of 

crystallography (e. g. Takeuchi, 1992). Each line constructed with segments of length S and 
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that of L in Figure 1 is considered to be a one- dimensional quasicrystal. Let denote the 

number of segments in the 𝑛th line from the uppermost one by 𝑁𝑛. Then 𝑁𝑛 expresses the 

Fibonacci Numbers when. ܮ ܵ = ሺͳ + √ͷሻ/ʹ.⁄  The Fibonacci Numbers are produced by the 

recurrence formula.  𝑁𝑛+ଶ = ሺܲ + ܳሻ𝑵𝒏+ଵ − ܲܳ𝑁𝑛  

when ܲ + ܳ =  ͳ and ܲܳ =  −ͳ, where 𝑁ଵ  =  ͳ and 𝑁ଶ  =  ͳ.Then ܲ =  ሺͳ −√૞ሻ/ʹ  and ܳ =  ሺͳ +  √૞ሻ/ʹ. These P and Q are the solutions of a quadratic equation. 

Each line has a self-similar structure as shown by the five lower lines in Figure 1. Then, 

ܮܵ  = ሺܮ + ܵሻܮ = ሺܮ + ܵ + ܮሻሺܮ + ܵሻ = ሺܮ + ܵ + ܮ + ܮ + ܵሻሺܮ + ܵ + ሻܮ  

          = ሺ௅+𝑆+௅+௅+𝑆+௅+𝑆+௅ሻሺ௅+𝑆+௅+௅+𝑆ሻ = ⋯ = (ଵ+√ହ)ଶ                      ( 1 )  

 

 
 

Figure. 1. One- dimensional quasicrystal and its self- similarity. The upper seven lines show the 

generating process of the Fibonacci sequence: ܮ/ܵ =  ሺͳ + √૞ሻ/૛. The lower five lines demonstrate 

self- similarity of the one-dimensional quasicrystal. (after Eiji Tokunaga-2003) 

 

Here (1 + 5)/ 2:1 is well known as the golden ratio. 

Let denote a segment of length ࡿ by ̅ࡿ and that of length ܮ by ̅ܮ , then the lines with 

self- similar structure are produced by the replacements ̅ܮ  → ܮ̅  ̅ࡿ and  ̅ࡿ +   →  We can . ܮ̅  

also form a self- similar set of segments of two different lengths, namely longer one and 

shorter one, dividing line ̅ܮ௞ of the finite length ܮ௄ by the following replacements ̅ܮ௞ → ௞−ଵܮ̅ + ܵ௞̅−ଵ, ܵ௞̅−ଵ →  ௞−ଶܮ̅

 

Therefore 

 

௞ܮ̅            → ௞−ଵܮ̅ + ܵ௞̅−ଵ  → ௞−ଶܮ̅ + , ௞−ଶܮ̅ ௞−ଵܮ̅ → ௞−ଶܮ̅ + ܵ௞̅−ଶ, ௞−ଵܮ̅  →  ௞−ଷ              (2)ܮ̅
 

where ܵ௞−௝ = ݆ ௞−௝−ଵ forܮ  = ͳ, ʹ … , ሺk −  ʹሻ. When ܮ௞−௝/࢐−࢑ࡿ =  ሺͳ + √૞ሻ/ʹ for ݆ =  ͳ, ʹ, … , ሺk −  ͳሻ, I can divide the line into segments which provide the Fibonacci 
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Numbers. The reputation of replacements shown by Replacement (2) is also the process to 

form a one- dimensional Sierpinski space. 

Recently Sakamoto (2000) showed that I can define lines with self- similar structure using 𝑁 𝑛+ଶ =  ሺܲ +  ܳሻ 𝑁𝑛+ଵ −  ܲܳ𝑁𝑛 for another conjugate values of P and Q (e. g. ܲ =  ͳ − √ʹ , ܳ =  ͳ + √ʹ ;  ܲ = ʹ − √͵ , ܳ =  ʹ + √͵). 

The law of stream numbers for self- similar drainage basins is also expressed by using a 

recurrence formula. First I denote the number of side tributaries of order j  entering into a 

stream of order ݇ by ܧ௞௝. When ܧ௞௝ takes the same value for a certain value of ሺ݇ −  ݆ሻ, 
independent of the individual values of ݇ and ݆, we can 

put ܧ௞−௝ =  ௞௝. Then I can derive the recurrence formula for the number 𝑁௞௝ of streams ofܧ 

order ݆ in a basin of order ݇ when  ܧ௞−௝ satisfies ܧଶ ⁄ଵܧ = ଷܧ  ⁄ଶܧ  = ⋯ = ௞−௝−ଵܧ/௄−௝ܧ   is constant. That is ܭ where ܭ=

 𝑁௞,௝ = ሺܲ + ܳሻ𝑁௞,௝+ଵ − ܲܳ𝑁௞,௝+ଶ      (3) 

 

where ܲ and ܳ are given as follows (Tokunaga, 1966,1978,1994,1998,2000): 
 ܲ = [ʹ + ଵܧ + ܭ − √ሺʹ + ଵܧ + ሻଶܭ − ͺܭ]ʹ  

ܳ = [ʹ + ଵܧ + ܭ + √ሺʹ + ଵܧ + ሻଶܭ − ͺܭ]ʹ  

Here it should be noted that ܲ and ܳ are the solutions of a quadratic equation. This type of 

recurrence formula can be transformed into a continued fraction (Tokunaga, 1994). 

put  ௞ܶ௝ = ௞ܶ−௝ =  ,is called the tree generator (Veitzer and Gupta ࢐࢑ࢀ  ௞−௝−ଵ. Thenܭ ଵܧ

2000) . I can derive an equation, which expresses 𝑵࢐,࢑ in the form of the sum of a series 

(Tokunaga , 1966,1978,1994 ,1998, 2000) .  Then 

  𝑁௞,௝ = ଶ+ாభ−௉ொ−௉ ܳ௞−௝ + ଶ+ாభ−ொ௉−ொ ܲ௞−௝       (4) 

 
The drainage system expressed by Eq. (3) or (4) has been called Branching System I 

(Tokunaga, 1994, 1998, 2000). The law of basin areas of Branching System I is given by 

௞ ܣ  =  ௝ܳ௞−௝          (5)ܣ

 

where ܣ௞ is the area of a basin of order ݇ and ܣ௝ that of order. ݆ This equation is derived on 

the assumption that a basin of a given order is divided into subbasinsand interbasin areas of 

infinitesimal sizes in the ultimate. Denwa drainage basin with ܧଵ = ͳ and ܭ = ʹ is illustrated 

in Figure 2. Here let 𝑁ூ,௞௝ be the number of interbasin areas adjoining a stream of order ݇ and ܤ௞௝ be the area of such an inter basin area when streams of orders lower than ࢐ are ignored. 

Then the following replacements hold for Branching System ܫ. 
௞ܣ]  → [ሺʹ + ௞−ଵܣଵሻܧ + 𝑁ூ,௞,௞−ଵܤ௞,௞−ଵ]]      (6) 

 [𝑁ூ,௞,௝+ଵܤ௞,௝+ଵ] → ௝ܣ௞−௝−ூܭଵܧ] + 𝑁ூ,௞,௝ܤ௞,௝]      (7) 
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A 

 

B 

 

C 

Figure: 2 Basin names, ܽ, ܾ and ܿ, are used for explanation of relation of the law of stream fall by 

Yang (1971) to the most probable state of potential energy expenditure of running water 
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A 

 
B 

 
C 

Figure: 3. A process to form a self- similar drainage basin with ܧଵ = ͳ and ܭ = ʹ by replacements. A 

basin area is replaced by three sub basins and three inter basin areas. Area of figure C composed of 

three inter basin areas is replaced by two sub basins and five inter basin areas. The figures also show a 

process to form a two dimensional Sierpinski space 
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where 𝑁 ூ,௞,௝ =  ૛ + ଵܧ + ௞−௝−ଵܭ ሺܭ ଵܧ − ૚ሻ ሺܭ −  ૚ሻ⁄  and this relation is called 

the law of numbers of interbasin areas (Tokunaga, 1975, 1978, 2000). The values of ܧଵ, ,ܭ 𝑁ூ,௞,௝,  are given by the statistical values, for examples, the average values ࢐,࢑࡮ ௝ andܣ

for actual drainage basins (Tokunaga, 1966, 1975, 1978; Onda and Tokunaga, 1987; 

Peckham, 1995; Tarboton, 1996; Jamtnas, 1999; Peckham and Gupta, 1999; Veitzer and 

Gupta, 2000). 

 

Replacements (6) and (7) can be demonstrated by illustrations. Let the order of the 

three basins with ܧ ଵ =  ͳ and ܭ =  ૛ in Figure 3 be k, then the transition from Figure 3 (a) 

to Figure 3 (b) means Replacement (6). That from Figure 3( b) to Figure 3( c) means two 

replacements. One is Replacement (7) for ࢐ = ࢑  −  ૛ in the area occupied by inter basin 

areas in Figure 3 (b). The other is [ܣ௞−ଵ]  →  [ሺ૛ + ௞−ଶܣ૚ሻࡱ + 𝑁ூ,௞−ଵ,௞−ଶܤ௞−ଵ,௞−ଶ] in each 

of the basins of order ሺ݇ − ͳሻ. This relation is obtained by substituting ሺ࢑ − ૚ሻ into ࢑ in 

Replacement (6). 

 

Moussa (1997) used at first a Sierpinski space to describe a fractal property of 

drainage basins. Figure 3 also shows that a two- dimensional Sierpinski space is generated by 

repetitions of a successive shift of indices in Replacements (6) and (7). 

 

I can also demonstrate the replacements to form the Sierpinski space using the Denwa 

basin.Natural drainage networks are modeled on a statistical basis as a system with branching 

number 2 binary tree, whereas streams form deterministically a regular triadic tree, system 

with branching number 3  in the Denwa basin . Nevertheless the Denwa basin is a good tool 

to explain the self- similar natures of drainage basins. If we regard a trifurcating point to 

consist of two bifurcating points, which are dislocated with an infinitesimal distance from 

each other, Strahler's ordering method is available for it and its stream network. Then ܧଵ = ͳ 

and ܭ =  ʹ, ௞−ଵܣ = ௞ܣ Ͷ⁄ , and ܤ௞,௞−ଵ = ௞ܣ ͺ⁄   
in the Denwa basin. The law of numbers of 

inter basin areas in a basin with branching number 3 is given by 𝑁ூ,௞,௝ = ͳ + ଵܧ + ௞−௝−ଵܭ)ܭଵܧ − ͳ) ሺܭ − ͳሻ⁄  (Tokunaga, 2000). I can show the process to 

form the Sierpinski space substituting these values and relations into Replacements (6) and 

(7). The transition from Figure 4(a) to Figure 4(b) shows the replacement, [ܣ௞] ௞−ଵܣ͵]→ + =௞,௞−ଵሺܤʹ  ௞−ଵሻ] .The transition of the area occupied by inter basin area in Figureܣ

4(c) to the corresponding area in Figure 4(d) replacement,  [ʹܤ௞,௞−ଵሺ= [௞−ଵሻܣ ௞−ଶܣʹ]→ + Ͷܤ௞,௞−ଶሺ=  ௞−ଶሻ].  These rules to To Form the Sierpinski space, however, areܣʹ

entirely different from those demonstrated by Moussa(1997). 

 

Now I find the terms, namely, recurrence formula, solutions of a quadratic equation, 

and Sierpinski space, common to the one- dimensional quasicrystal and the self- similar 

drainage basin. I can regard the one- dimensional quasicrystals as the one- dimensional 

drainage basins although such basins never exist in the actual world. Crystallographers regard 

one- dimensional quasicrystals as being quasi- cyclic (e. g. Takeuchi, 1992; Sakamoto, 2000) 

whereas geomorphologists use the term "cyclic" or "cyclicity" for the property of drainage 

basins expressed by Eq. (4) (e. g. Tokunaga, 1978; Tarboton, 1996; Veneziano et al, 1997; 

Perera and Willgoose, 1998; Cui et al, 1999). The author considers one- dimensional 

quasicrystals or one- dimensional drainage basins to be cyclic in geomorphological sense. 

Potential energy expenditure of running water in all stream channels in a basin 

 

 The law of stream falls by Yang (1971) states that the ratio of the average stream fall—
p between any two different order streams in the same basin is unity. Numerable data taken 

from actual drainage basins show their favorable conformity to the law (Yang, 1971; Yang 

and Stall, 1973; Shimano, 1978). Yang (1971) tried to explain the physical basis of the law 

using the analogy of entropy in thermodynamics. His explanation is valid at least partly.  
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Figure. 4. The two rules to generate a Sierpinski space in a Denwa basin. A dotted square is regarded as 

a basin and a white square as to be occupied by two inter basin areas. 

 

Let denote the fall of a stream of order ݆ by ܪ௝ and suppose water that flows into the 

stream of order ሺ݇ − ͵ሻ at its uppermost reach in basin a in Figure 2. The most probable state 

of potential energy expenditure per unit mass of water is certainly sustained when ܪ௞ ௞−ଵܪ= = ௞−ଶܪ =  ௞−ଷ, as shown by Yang (1971). I cannot, however, specify the condition toܪ

keep the most probable state using such an equation for water flowing into the stream of order 

(݇ − ͵) in basin ܾ with in the traveling root from its inflow point to the uppermost reach of 

the stream of order (݇ − ͳ) whereas the relation ܪ௞ =  ௞−ଵ sustains the most probable stateܪ

of potential energy expenditure of a unit mass of water after flowing into the stream of order ሺ݇ − ͳሻ. The relation ܪ௞−ଵ = ௞−ଶܪ =  ௞−ଷ also sustains the most probable state for a unitܪ

mass of water flowing into the stream of order ሺ݇ − ͵ሻ in basin c at its uppermost reach up to 

the confluence point of the streams of order ሺ݇ − ͳሻ and order k. I cannot, however, specify 

the condition to keep the most probable state in the reach downward from the confluence 

point by using the relation regarding stream falls. Nevertheless let us regard provisionally the 

following relation as a necessary condition to sustain the most probable state of potential 

energy expenditure per unit mass of water supplied to a drainage basin of order ݇. ܪ௞ = ௞−ଵܪ = ⋯ = ௝ܪ = ⋯ =  (8)       ܪ

Here let ܮ௞,ℎ be the length of a stream of order ݇ measured by a ruler with length ݈ℎ, 

and ܮ௝,ℎ  be that of order ݆, then the law of stream lengths for a self- similar network is 

expressed as follows: ܮ௞,ℎ = ௝,ℎܳ஽𝑠ሺ௞−௝ሻܮ ஽𝐵⁄         (9) 

where ܦ𝑠 is the fractal dimension of individual streams, ܦ𝐵 that of individual basins, and ࢎ࢒ the straight- line length of a stream of order ℎ for ࢐ ൒  ,Tokunaga, 1994, 1998) ࢎ 

2000).Then usually ܦ𝐵 = ʹ for actual drainage basins. Combination of Eqs. (8) and (9) 

provides a self- affine stream network in three- dimensional space (Tokunaga, 1998). I can 

meditate on the most probable state of potential energy expenditure per unit mass of water in all 
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stream channel of in a basin of a given order, which satisfies the condition of self- affinity of 

its steam network, using Eqs. (4), (5), and (8). 

 

Let denote the quantity of water supplied as precipitation to a basin of order ݆ in a given 

period of time by 𝑊௝. Then we may postulate the relation 𝑊௝ =  is constant ߙ ௝ whereܣߙ

regardless of the value of  ݆. Let 𝑒௝∗ be the potential energy expenditure per unit mass of water 

supplied to a basin of order ݆ in the stream of order ݆.Then the following relation can be 

assumed between 𝑒௝∗ and ܪ. 

 𝑒௞∗ = 𝑒௞−ଵ∗ = ⋯ = 𝑒௝∗ = ⋯ =  (10)                  ܪߚ 

Table 1. Potential energy expenditure,  𝑒௝ − ͳ , per unit mass of water in all streams in a 

basin of order ሺ݆ − ͳሻ. Streams of orders lower than ݅ are ignored. In the basin, ܧଵ  =  ͳ and ܭ =  ʹ. The third terms in the braces show the rapid convergence of them for decrease of i 

value. 

= ࢏  − ࢐ ૛ ࢏ = ࢐ − ૜ ࢏ = ࢐ − ૝ 𝒆࢐−૚ {ሺʹ ͵⁄ ሻʹ + Ͷ ͻ⁄ − ሺͳ ͵͸⁄ ሻ}ܪߚ {ሺʹ ͵⁄ ሻ͵ + ሺͶ ͻ⁄ ሻ − ሺͳ ͳͶͶ⁄ ሻ}ܪߚ {ሺʹ ͵⁄ ሻ͵ + ሺͶ ͻ⁄ ሻ− ሺͳ ͷ͹͸⁄ ሻ}ܪߚ 

where ߚ is constant. Here let 𝑒௞ be the potential energy expenditure per unit mass of water 

supplied to a basin of order ݇ in all streams in the basin. When we ignore streams of orders 

lower than ݅. Then I can give 𝑒௞ by 

𝑒௞   = [∑ 𝑒௝∗𝑊௝𝑁௞,௝௞
௝=ଵ ] 𝑊௞ =⁄ [∑ 𝑒௝∗ܣ௝𝑁௞,௝௞

௝=ଵ ] ⁄௞ܣ                                                                        ሺͳͳሻ 

   

From Eqs. (4), (5), (10), and (11), 

 𝑒௞ = ܪߚ ଵܥ]∑ + ଶሺܲܥ ܳ⁄ ሻ௞−௝]௞
௝=ଵ = ଵሺ݇ܥܪߚ − ݅ + ͳሻ + ଶܥܪߚ [ܳ − ܳሺܲ ܳ⁄ ሻ௞−௜+ଵ]ሺܳ − ܲሻ          ሺͳʹሻ 

 

where ܥଵ = ሺʹ + ଵܧ − ܲሻ ሺܳ − ܲሻ⁄  and ܥଶ = ሺʹ + ଵܧ − ܳሻ/ሺܲ − ܳሻ. For a basin of 

order ሺ݆ − ͳሻ, I have 𝑒௝−ଵ = ଵሺ݆ܥܪߚ − ݅ሻ + ܳ]ଶܥܪߚ − ܳሺ𝑝 ܳ⁄ ሻ௝−௜] ሺܳ − ܲሻ⁄                                (13) 

The average state of infinite topologically random channel networks satisfies Eq. (4) with ܧଵ = ͳ and ܭ = ʹ (Shreve, 1969; Tokunaga, 1978). Therefore ܲ = ͳ and ܳ = Ͷ. The values 

of 𝑒௝−ଵ for ݅ = ݆ − ʹ, ݆ − ͵, and ݆ −  Ͷ for ܧଵ  =  ͳ and ܭ =  ʹ are shown in Table 1. The 

values show that absolute value of the second term of the right side of Eq. (13) rapidly 

approaches ሺͶ/ ͻሻ ܪߚ with decrease of ݅. Therefore I can use 𝑒௝−ଵ ≈ ଵሺ݆ܥܪߚ − ݅ሻ + ଶܳܥܪߚ ሺܳ − ܲሻ⁄                  (14) 

instead of Eq. (13) for a large value of ሺ݆ −  ݅ሻ Put 𝑒∞ = 𝑒௝−ଵ, then we derive the following 

equation for 𝑒௞ = ଵሺ݇ܥܪߚ − ݆ + ͳሻ + 𝑒∞                          (15) 
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I can regard 𝑒∞ as constant for a very large value of ሺ࢐ −  iሻ. Then Eq. (15) shows that , 𝑒௞ , 𝑒௞−ଵ, … , 𝑒௝+ଵ, and 𝑒௝ distribute equidistantly, increasing their values as the index value 

increases. This means that the amount of potential energy expenditure per unit mass of water 

in all streams in a basin of a given order increases equidistantly as the order increases when 

streams of orders lower than a certain value are ignored. Such a situation occurs in self- 

similar drainage basins when the law of stream fall is kept in them. 

 

Most probable state of potential energy expenditure of water in denwa drainage basins 

 

Two streams of a given order join to form a stream of the next higher order in Strahler's 

ordering system. This designation inevitably divides the basin into two areas with 

topographically different natures. I can clearly demonstrate it using the example in Figure 2. 

The drainage basin of order ݇ is divided into the areas occupied by the two basins of 

order ሺ݇ − ͳሻ, which feed the streams entering into the stream of order ݇ at its uppermost 

point, and the area occupied by the basins, which feed the side tributaries entering into the 

stream of order k, and the inter basin areas adjoining the stream of order ݇. I refer to the latter 

one a side area of the stream of order k and designate its area by ܣ௞∗ . Then ܣ௞∗ = ௞ܣ ∗௞ܣ ௞−ଵ.This relation defines the side area of a stream of a given order. Thereforeܣʹ− = ௞ܣ ,௞−ଵܣʹ− ∗௞−ଵܣ = ௞−ଵܣ − ,௞−ଶܣʹ … , ∗௝+ଵܣ = ௃+ଵܣ − ௝.Basins of order ሺ݇ܣʹ − ͳሻ are always 

structurally similar to that of order ݇ in a self- similar drainage basin. Therefore, how to 

divide the side area to the stream of order ݇ into subbasins of various orders decides the 

composition of the drainage network of order ݇. I can derive an equation for ܣ௞∗ , ,௞−ଵܣ … ,  ,௝ܣ

and ܤ௞,௝ as follows: 

∗௞ܣ  = ଵܧ ∑ ℎܣ௞−ℎ−ଵܭ + 𝑁ூ,௞,௝ܤ௞,௝௞−ଵ
ℎ=௝                                                                                             ሺͳ͸ሻ 

where 𝑁ூ,௞,௝ = ʹ + ଵܧ + ௞−௝−ଵܭ)ܭଵܧ − ͳ) ሺܭ − ͳሻ⁄ as mentioned before. Let denote the 

potential energy expenditure of water supplied as precipitation to the side area of a stream of 

order ݇ in all streams in the side area by ࢑ࢁ. Then ࢑ࢁ is given 

ܷ௞ = ଵܧ ∑ 𝑒ℎܭ௞−ℎ−ଵ𝑊ℎ = ௞−ଵܧܪଵܥߚߙ
ℎ=௝ ଵ ∑ ௞−ℎ−ଵሺℎܭ − ݆ + ͳሻܣℎ + ∞𝑒ߙ

௞−ଵ
ℎ=௝ ଵܧ ∑ ℎ  ௞−ଵܣ௞−ℎ−ଵܭ

ℎ=௝             ሺͳ͹ሻ 

when Eq. (15) is satisfied in all basins in the side area. I can eliminate the second term of 

the right side of Eq. (16) for a considerably large value of ሺ݇ −  jሻ because of the small value 

of ሺ𝑁ூ,௞,௝ܤ௞,௝ ⁄∗௞ܣ ሻ.Thus I obtain 

∗௞ܣ  ≈ ଵܧ ∑ ℎ௞−ଵܣ௞−ℎ−ଵܭ
ℎ=௝                                                                                                                      ሺͳͺሻ 

   

Then I can also derive  ௞ܷ − ∗௞ܣ∞𝑒ߙ ≈ ∑  ଵܧܪଵܥߚߙ ௞−ℎ−ଵሺℎܭ − ݆ + ͳሻ௞−ଵ
ℎ=௝ ℎܣ                                                                ሺͳͻሻ 

From Eqs. (17) and (18). 

Here let us replace the approximation signs in Eqs. (18) and (19) with equality signs 

respectively. Then I can derive the following equations for constant values of ܣ௞∗  and ௞ܷ. 
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∗௞ܣ = ଵܧ ∑ ℎ௞−ଵܣ௞−ℎ−ଵܭ
ℎ=௝                                                                                                                      ሺʹͲሻ 

 

ܦ  = ଵܧܪ ∑ ௞−ℎ−ଵሺℎܭ − ݆ + ͳሻ௞−ଵℎ=௝ ℎܣ                                                                              ሺʹͳሻ 

  

Any where ࡰ = ሺ ௞ܷ − ∗௞ܣ ∞𝑒ߙ ሻ ⁄ଵܥߚߙ  and therefore D is regarded as constant for a given 

value of ሺ݆ − ݅ሻ in Eq. (14). Equation (20) means that the quantity of water supplied to the 

side area of the stream of order k in the given period is constant because 𝑊௝ = ௝ܣߙ , and Eq. 

(21) that the amount of potential energy expenditure of water supplied to the side area in the 

given period is also constant, where the unit of mass of water can be given arbitrarily. 

Let us regard a unit mass of water supplied to a unit area in the given period as a body and 

postulate that the amount of potential energy expenditure of each body differs from those of 

the other bodies in a basin in the side area. Then infinitesimally small difference in potential 

energy expenditure is postulated to be distinguishable. This means that all the bodies can be 

numbered by the amounts of their potential energy expenditure and therefore compose a 

numerable set in the basin. Let us divide a basin in the side area into two dimensional cells of 

the unit area and postulate the state that all the cells can be numbered according to their 

positions in the basin. The number of all different arrangements of the numbered cells in a 

basin of order ݆ is ܣ௝!, where ܣ௝ is regarded as a natural number. Let denote the product of the 

numbers of all different arrangements of cells in respective basins in a side area by 𝑔. Then 

 g = ሺܣ௞−ଵ!ሻாభሺܣ௞−ଶ!ሻாభ௄ሺܣ௞−ଷ!ሻாభ௄మ … ሺܣℎ!ሻாభ௄ೖ−ℎ−భ ாభ௄ೖ−ೕ−భ(!௝ܣ) …
   (22) 

 

Let us decrease water supplied to a basin of order ሺ݇ —  ʹሻ by two bodies and assume that 

the amounts of potential energy expenditure of these bodies in all streams in the basin 

approximate to the average value, 𝑒௞−ଶ , respectively. And let us increase water supplied to a 

basin of order ሺ݇ − ͳሻ by one body, the amount of potential energy expenditure of which 

approximates to 𝑒௞−ଵ, and that supplied to a basin of order ሺ݇ − ͵ሻ by one, the amount of 

potential energy expenditure of which approximates to 𝑒௞−ଷ. This procedure leaves ࢑ࢁas well 

as ܣ௞∗   unchanged because 𝑒௞−ଵ − ʹ𝑒௞−ଶ + 𝑒௞−ଷ = ሺ݇ܪଵܥߚ − ݆ሻ + 𝑒∞ − ሺ݇ܪଵܥߚʹ − ݆ − ͳሻ − ʹ𝑒∞ + ሺ݇ܪଵܥߚ − ݆ − ʹሻ + 𝑒∞ = Ͳ 

The product g' of numbers of all different arrangements of cells in the respective basins in the 

side area after the procedure is expressed by g′ = ሺܣ௞−ଵ!ሻாభ−ଵሺܣ௞−ଵ + ͳሻ! ሺܣ௞−ଶ!ሻாభ௄−ଵሺܣ௞−ଶ − ʹሻ! ሺܣ௞−ଷ!ሻாభ௄మ−ଵ 

                               × ሺܣ௞−ଷ + ͳሻ! ሺܣ௞−ସ!ሻாభ௄య … ாభ௄ೖ−ೕ−భ(!௝ܣ)
            (23) 

The ratio g'/g is given by g′g = ሺܣ௞−ଵ + ͳሻ! ሺܣ௞−ଶ + ʹሻ! ሺܣ௞−ଵ + ͳሻ!ܣ௞−ଵ! !௞−ଶܣ !௞−ଷܣ = ሺܣ௞−ଵ + ͳሻሺܣ௞−ଷ + ͳሻሺܣ௞−ଶ − ͳሻܣ௞−ଶ  

 

When a basin of order ሺ݇ −  ͵ሻ contains a very large number of cells, this expression may be 

replaced by 
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𝐠′𝐠 = ૛૛−࢑࡭૜−࢑࡭૚−࢑࡭                                              (24) 

When g takes a maximum value, a small variation in the arrangements should leave it 

unchanged, then g′ g⁄ = ͳ and thus  ܣ௞−ଵ ௞−ଶܣ = ௞−ଶܣ ⁄⁄௞−ଷܣ . A Similar relationship applies 

to  ܣ௞−ଶ,ܣ௞−ଷ, and ܣ௞−ସ; . . . ; ,௝+ଶܣ   ௝+ଵ. Therefore the condition for the maximum value of gܣ

is ܣ௞−ଵ ⁄௞−ଶܣ = ௞−ଶܣ ௞−ଷܣ = ⋯ =⁄ ௝+ଵܣ ௝ܣ = ܳ⁄                            (25) 

This relation is the law of basin areas itself. Let denote the numbers of water bodies 

supplied to all basins of order j in the side area of the stream of order k by 𝑤௝,. Then 𝑊′௞−ଵ 𝑊′௞−ଶ⁄ = 𝑊′௞−ଶ 𝑊′௞−ଷ⁄ = ⋯ = 𝑊′௝+ଵ 𝑊′௝⁄ = ܳ ⁄ܭ           (26) 

 

because 𝑊′௝ = ܳ ௝ . The relation of K to Q in Eq. (3) evidently shows thatܣ௞−௝−ଵܭଵܧߙ ܭ > ͳ⁄ .  

 

A similar method is taken to obtain a most probable state under the restrictive conditions 

that the number of particles or oscillators and the total energy possessed by them are constant 

respectively in statistical thermodynamics (e. g. Reif, 1965). Equations (20) and (21) are 

apparently the restrictive conditions to sustain a most probable state of potential energy 

expenditure of water bodies in the side area of the stream of order k. 

Statistics for potential energy expenditure of water bodies, however, differs from BE, FD, 

and MB statistics in some points. The number of quanta or particles decreases exponentially 

as their energy or energy level increases in BE, FD, and MB statistics. On the other hand, 

water bodies are clustered in respective basins and each clustered water bodies has the 

average value of their potential energy expenditure. The number of water bodies increases 

exponentially as the average value of their potential energy expenditure increases 

equidistantly as shown by Eqs. (15) and (26). The probability that a water body belong to the 

clusters, which produce an average value of potential energy expenditure, increases as the 

average value increases. This provides a distribution reverse to the canonical distribution, 

which expresses the relation between probability and energy in thermodynamics. I may refer 

to the distribution as the reverse canonical distribution for clustered bodies. Equations (22) 

and (23) allow us to assume the state that in each basin the cells of unit area with different 

relative heights above its outlet distribute at random. This means that basins of higher orders 

have very rugged surfaces on which water does not flow at least smoothly. Random 

arrangements of the cells of different relative heights seldom form drainage divides. 

Conversely the marginal part of a cluster of cells ought to be occupied by ones relatively 

higher than those in the inner part to form a drainage network. Then the random process 

seems to be contradictive to the forming process of drainage basins. Altitudes of confluence 

points of side tributaries to a stream of a given order differ from each other in the side area of 

the stream. Consequently water bodies supplied to a basin have a base level different from 

those to the other basins with regard to potential energy expenditure in the side area of the 

stream, whereas the base level is given absolutely in BE, FD, and MB statistics. I need some 

additional settings to explain physical bases of the self- similarity of drainage basins. 

Nest of most probable states 

A key concept to create the statistics with physical bases for drainage basin composition is 

a nest of most probable states. It will be shown in this chapter by using the Denwa basin. As 

mentioned afore, ܧଵ = ͳ, ܭ = ʹ, ܲ =  ͳ, and ܳ = Ͷ in it. 

Let the lower half of the basin in Figure 5( a) be the side area of the stream of order k. 

Then there exist one basin of order ሺ݇ − ͳሻ, two of order ሺ݇ − ʹሻ, four of order ሺ݇ − ͵ሻ, eight 

of ሺ݇ − Ͷሻ, and sixteen interbasin areas in the side area when streams of order lower than (k - 
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4) are ignored. The number of inter basin areas adjoining a stream of a given order in a basin 

with branching number 3 is one less than that in a basin with branching number 2 as 

mentioned before. A black right square in Figure 5(a) consists of two right triangles and each 

one is an inter basin area adjoining the stream of order ݇. Let us assume the state that 

numbered cells with different heights above its outlet distribute at random regarding their 

positions in each basin. Water bodies supplied to the cells in a basin of order ሺ݇ − ͳሻ provides 𝑒௞−ଵ, those to the cells in a basin of order ሺ݇ − ʹሻ provides 𝑒௞−ଶ ,and so forth. I may also 

assume that the relief of the basin of order ሺ݇ −  ͳሻ is larger man that of the basin of order ሺ݇ − ʹሻ,  and then the relief of the basin decreases as the basin order becomes lower. This 

state should satisfy Eqs. (20), (21), (22), (23), (24), and (25). The diameter of black circles in 

Figure 5 shows the size of the relief of each basin qualitatively. 

I can depict a most probable state in each basin of order ሺ݇ − ͳሻin a similar manner as to 

obtain Figure 5(a). The result is shown as Figure 5(b). The basins of order ሺ݇ − ͵ ሻand of 

order ሺ݇ − Ͷሻ, and interbasin areas with relief smaller than that of the basin of order ሺ݇ −ʹሻdistribute alongside the stream of order ݇ and those of order ሺ݇ − ͳሻ, whereas the area 

adjoining the margin of the basin of order ݇ except the part near its outlet is occupied by 

eleven basins of order ሺ݇ − ʹሻwith relatively large relief. Drainage divides can exist only in 

areas with relatively large relief. 

 

I can also depict a most probable state in each basin of order ሺ݇ − ʹሻ in Figure 5( b) as shown by 

Figure 5(c). Then a stream of order ሺ݇ − ʹሻappears with four interbasin areas in each of the basins of 

order ሺ࢑ − ૛ሻ.All the streams are mostly surrounded by basins of order (k - 4) and inter basin areas 

with relatively small relief. The areas Adjoining the margins of the basins of order k, order ሺ࢑ − ૚ ሻand 

order ሺ࢑ − ૛ሻ are occupied by the basins of order ሺ࢑ − ૜ሻ with relatively large relief (Fig 6) except the 

part of their outlets. The surface of the basin designated by Figure 5(c) is much smoother than that by 

Figure 5(a). The three- dimensional form of the former basin is more systematic than latter one. 

 

I  can assume basins of ሺ݇ − ͷሻin the basin shown by Figure 5(c). Then an inter basin area is divided 

into one basin of order ሺ݇ − ͷሻ and two inter basin areas. This procedure makes the surface of the whole 

basin smoother and its three-dimensional form more systematic. Here let denote a system, in which  ࢑࡭ 

cells of a unit area with different heights distribute at random and the heights of the cells produce the 

average value corresponding to 𝒆࢑, by ܵ௞. I  can assume a system at a most probable state in which cells 

of unit area with different heights above the outlet distribute at random in each of basins of orders 

lower than ݇. Then the heights of ܣ௞−ଵ cells in each of basins of order  ሺ݇ − ͳሻ produce the 

average value corresponding to 𝑒௞−ଵ, …, and those in each of basins of order (݇ − ʹሻ the 

average value corresponding to 𝑒௞−ଶ, …, . and those in each of basins of order ݆  the average 

value corresponding to 𝑒௝. Let us denote the system by ܵ௞,௞−ଵ . Similarly we can define a 

system at a most probable state denoted by ܵ௞,௝with a general index j in which the cells with 

different heights distribute at random in each of basins of orders lower than ݆. The following 

relation is derived for ܵ௞, ܵ௞,௞−ଵ, … , ܵ௞,௝. 

 ܵ௞ ⊃ ܵ௞,௞−ଵ ⊃ ⋯ ⊃ ܵ௞,௝ 

 

This relation shows a nest structure of most probable states: a most probable state in a 

most probable state in a most probable state and so forth. Such a structure for the Denwa 

basin is demonstrated by using Figure 5. The basin illustrated by Figure 5(c) exists as a most 

probable state in that by Figure 5(b), which exists as a most probable state in that by Figure 

5(a). The basin illustrated by Figure 5(a) is a most probable state of a regular square with the 

area same to that of the basins of order ݇ in Figure 5 in which cells with different heights 

distribute at random. 
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Figure. 5. The nest of most probable states of potential energy expenditure of water bodies in a Denwa 

basin. Diameters of black circles show average values of potential energy expenditure per unit mass of 

water in respective basins qualitatively. The smallest right square consists of two inter basin areas with 

the shape of the right triangle. Streams of orders lower than ሺ࢑ − ૛ሻ are not drawn. 

 

A mountain landscape is formed as a set of basins and inter basin areas. It looks to have a 

smooth surface cover completely different from those of rugged figures with Brownian relief 

by Mandelbrot (1983). The basin forming process is also one to form the mountain landscape 

with a smooth surface.  

 

The nest of most probable states proposes a general idea that randomness can produce 

convergence. The principle that a form is produced as the nest of most probable states seems 

to be applicable to not only self- similar branching systems including diffusion limited 

aggregation (DLA), lightning, neural networks etc. but also to another systems with stable 

forms. 

 

Values of ࡱ૚ and 𝑲 

 
The nest of most probable states is defined by using Eqs. (20), (21), (22), (23), (24), (25), 

(26) and (27). There are no mathematical restrictions as to the values of ܧଵand ܭ themselves 

except ܧଵ > Ͳ and ܭ > Ͳ when I treat them as statistical values. These equations are so 

comprehensive regarding the values of ܧଵ and ܭ that I can define a self- similar system as the 

nest of most probable states for any large value of them. On the other hand it has been proved 

that Shreve's (1966, 1969) random topological model satisfies Eq. (4) with ܧଵ = ͳ and ܭ = ʹ 

as a law which expresses the average state (Tokunaga, 1975, 1978). Empirical data, however, 
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show a general tendency that ܧଵ and ܭ as the average values are larger than 1 and 2 but not 

far from these values respectively in low order parts which provide reliable values because of 

large populations of streams in them (Tokunaga, 1966, 1978; Onda and Tokunaga, 1987; 

Peckham, 1995; Tarboton, 1996; Jamtnas, 1999; Peckham and Gupta, 1999;Veitzer and 

Gupta, 2000). 

 

There are some discussions on discrepancies between the empirical data and the 

random topological model on the values of ܧଵ and ܭ (e. g. Tokunaga, 1978; Peckham, 1995; 

Cui et al., 1999; Veitzer and Gupta, 2000). Tokunaga (1978) has stated that an equilibrium 

state of a drainage network is kept on the balance of randomness and non-random force. He 

also regarded the network, which satisfies Eqs. (4) and (5), as to be at the equilibrium state 

encompassing that of the maximum entropy with ܧଵ = ͳ and ܭ = ʹ (Tokunaga, 1978). His 

consideration was made at that time without the physical bases demonstrated in this paper. 

 

Discussion 

 

Theoretical studies on the values of ܧଵ and ܭ have also advanced since the proposal of 

concept of self-similarity by Mandebrot (1977, 1983). Perera and Willgoose (1998) examined 

the behavior of the cumulative area distribution based on the model defined by ܧଵ and ܭ 

setting two different types of zeroth order hill slope flow patterns. Then they showed by 

simulation that the value of ܭ is strongly related to the scaling exponent in the region of the 

catchment dominated by fluvial erosion. Cui et al. (1999) have considered the values of ܧଵ 

and ܭ as representing the effects of regional controls and pointed out importance of a space-

filling constraint to explain these values using their model, stochastic Tokunaga model. 

Peckham and Gupta (1999) discussed the value of ௞ܶ,௝ = ௞ܶ−௝ =  ௞−௝−ଵ presenting aܭଵܧ

reformation of Horton's laws on the basis of statistical self-similarity. Veitzer and Gupta 

(2000) analyzed this value and its variability introducing a new class of random self- similar 

networks. These studies have widened the horizon of study on drainage basin 

geomorphology. Further development of these studies might result in providing some 

statistical bases in connection with physical quantities. I can discuss some about the values of ܧଵ and ܭ relating the nest of most probable states of potential energy expenditure of water 

bodies, Shreve's (1966,1969) random topological model, and empirical data to each other. 

 

Empirical data exhibit a general tendency that the value of ܧଵ is not far from 1 and 

that of ܭ from 2 as mentioned in the previous chapter. This implies that actual drainage 

networks strongly controlled by randomness. Any constraints are not imposed on direction of 

streams in Shreve's (1966, 1969) random topological model. Streams merge each other 

completely at random in it. This means that no directionally systematic inclinations of streams 

are postulated. Water never flows in networks in which streams have no systematic 

inclinations. There is, however, no reason for us to abandon Shreve's (1966, 1969) random 

topological model. It should be considered to be an asymptotic base for theoretical 

consideration of drainage network composition. 

 

Water is drained from a basin through systematically inclined streams. Directionally 

systematic inclinations should impose a non-random bias on confluences of streams. Then the 

non- random bias probably acts as a force to raise the values of ܧଵ and ܭ above 1 and 2 

respectively. A stream with larger slope provides a stronger non- random bias. If so, the tree 

generator ଶܶ,ଵ must tend to be larger than ଷܶ,ଶ in actual drainage basins because Horton's 

(1945) law of stream slopes shows that the average slope of streams decreases geometrically 

as the order of streams increases. Jamtnas (1999) obtained tree generator matrices for 48 

drainage basins in the United States, orders of which are equal to or higher than 6, after 

Peckham's (1995) study. Figures of the generators are shown to the two places of decimals. 

The values of ଶܶ,ଵ and ଷܶ,ଶ are regarded as relatively stable for their large numbers of 

samples. Then ଶܶ,ଵ > ଷܶ,ଶ in 29 basins, ଶܶ,ଵ = ଷܶ,ଶ  in 4 basins, and ଶܶ,ଵ < ଷܶ,ଶ  in 15 basins. 
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The difference ( ଶܶ,ଵ − ଷܶ,ଶ) is evaluated small in all basins. The result is favourable to the 

conjecture mentioned above in statistical sense. The comparison of the values ଶܶ,ଵ  and ଷܶ,ଶ in 

a basin, however, is almost meaningless because these values have wide ranges of distribution 

due to their stochastic property and also more or less influenced by regional difference of 

geologic controls, etc. It must be still more difficult to prove that there exists the firm relation, ௞ܶ,௞−𝑤 < ௞ܶ−ଵ,௞−𝑤−ଵ < ⋯ < ௝ܶ+ଵ,௝−𝑤+ଵ  with a small difference between successive terms 

for ͳ ൑  𝑤 ൑  ݆, only using empirical data. If the existence of this relation is theoretically 

explained, the self-similar model defined by the constant values of ܧଵ and ܭ will result in 

having a clear meaning as an asymptotic model with physical bases. Then drainage basins, 

which satisfy the relation mentioned above, are regarded as to be dislocated slightly from the 

self- similarity and at a quasi- equilibrium state. 

 

Another asymptotic postulation was also used on the process to derive the nest of 

most probable states of potential energy expenditure of water bodies. I needed the assumption 

that a basin of a given order is divided into sub basins and inter basin areas of infinitesimal 

sizes to derive the law of basin area expressed by Eq. (5) (Tokunaga, 1978, 1994, 1998, 

2000). The law of stream lengths expressed by Eq. (9) was derived from Eq. (5) (Tokunaga, 

1994, 1998, 2000). Therefore the stream in a basin of an infinitesimal size should have the 

corresponding, namely infinitesimal, length. A stream with infinitesimal length and a finite 

fall given by Eq. (8) should be vertical. Such a stream never appears in nature. The 

assumption of sub basins and inter basin areas of infinitesimal sizes shows the asymptotic 

direction. I can presumably say that I need some asymptotic postulations, even if they are 

contradictive to each other in the ultimate, for modeling of complex systems such as drainage 

networks. Equations (20) and (21) are also derived by using the asymptotic property 

mentioned above. 

Final remarks 

 

Drainage basin forms projected on the two- dimensional plane have mathematical 

properties similar to those of one- dimensional quasicrystals. These properties are expressed 

by recurrence formulas consisting of three terms as well as by Sierpinski spaces. One of 

coefficients in the recurrence formulas is given by the product of the solutions of a quadratic 

equation and the other one by the sum of them. These expressions common to the 

quasicrystals and drainage basins describe their common properties, namely, cyclicity and 

self- similarity although the term, quasi- cyclic, is used in the field of crystallography. 

 

The Helmholtz free energy should concern the stability of quasicrystals. The stability of 

self- similar drainage basins is explained by using the nest of most probable states of potential 

energy expenditure of water bodies. This must be considered an important physical base. The 

nest of most probable states never impose any constraints on the values ܧଵand ܭ except ܧଵ > Ͳ and ܭ > Ͳ. Empirical data, however, shows the general tendency that ܧଵ > ͳ and ܭ > ʹ but these values are not so far from 1 and 2 respectively. This implies that confluences 

are fairly influenced by topological randomness in addition to any other forces than it. The 

author considers that stochastic theories combined with three- dimensional forms of basins 

and some explicit physical quantities in connection with them will explain the values of there 

are ܧଵ and ܭ concretely. He also expects that the introduction of probabilistic theories into 

analysis of self- similarity of drainage basins (e.g. Cui et al., 1998; Peckham and Gupta, 

1999; Veitzer and Gupta, 2000) will lead to discovery of such quantities. If there exists the 

relation, ௞ܶ,௞−𝑤 < ௞ܶ−ଵ,௞−𝑤−ଵ < ⋯ < ௝ܶ+ଵ,௝−𝑤+ଵ, for 1൑ 𝑤 ൑ ݆ with a small difference 

between successive terms in a basin of order ࢑ when streams of orders lower than ࢐ are 

ignored, the basin is regarded as to be at quasi- equilibrium state. 

 

Any thermodynamic functions are not yet defined for the nest of most probable states. 

Established statistics for thermodynamics are defined in a unitary space. This study clarified 
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that statistics in nested spaces is needed to define thermodynamic functions for self- similar or 

self- affine branching systems. The author feels some limitations to established principles of 

physics in investigations of complex systems. It is rather expected mat new principles of 

physics will be discovered in objects of geomorphology and hydrology. 
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