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Complexities of  landscapes  incision through layered 

stratigraphy with contrasts in rock strength 

 

Dr. N.L. Dongre 

 
"All of Nature follows perfectly geometric laws. The Ancient Egyptian, a Greek, Peruvian, Mayan, and  

           Chinese culture were well aware of this, as Phi—known as the Golden Ratio or Golden Mean—was  

                          used in the constructions of their sculptures and architecture."  

                                                                                                                                    — Joseph P. Kauffman  

 

 
 
Chitrakut Falls, on Indrawati River ,India .have a resistant caprock layer that is underlain by a weaker rock. 

The waterfall has the caprock at its lip, followed by a vertical, or often overhanging, face within the weak 

rock. This is a case of a very steep channel within a highly erodible rock, which would not be predicted 

from topographic equilibrium and stream power erosion. 

__________________________________________________________________________ 

 
Abstract. The topographic concrpt of steady state has substantially informed our 

understanding of the relationships between landscapes, tectonics, climate, and 

lithology. In topographic steady state, erosion rates are equal everywhere and 

steepness adjusts to enable equal erosion rates in rocks of different strengths. This 

conceptual model makes an implicit assumption of vertical contacts between 

different rock types. Here we hypothesize that landscapes in layered rocks will be 

driven toward a state of erosional continuity, where retreat rates on either side of a 

contact are equal in a direction parallel to the contact rather than in the vertical 

https://www.goodreads.com/author/quotes/14771522.Joseph_P_Kauffman
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direction. For vertical contacts, erosional continuity is the same as topographic 

steady state, whereas for horizontal contacts it is equivalent to equal rates of 

horizontal retreat on either side of a rock contact. Using analytical solutions and 

numerical simulations, we show that erosional continuity predicts the form of flux 

steady-state landscapes that develop in simulations with horizontally layered rocks. 

For stream power erosion, the nature of continuity steady state depends on the 

exponent, n, in the erosion model. For n = 1, the landscape cannot maintain 

continuity. For cases where 𝒏 ≠  , continuity is maintained, and steepness is a 

function of erodibility that is predicted by the theory. The landscape in continuity 

steady state can be quite different from that predicted by topographic steady state. 

For 𝒏 <   continuity predicts that channels incising subhorizontal layers will be 

steeper in the weaker rock layers. For subhorizontal layered rocks with different 

erodibilities, continuity also predicts larger slope contrasts than in topographic 

steady state. Therefore, the relationship between steepness and erodibility within a 

sequence of layered rocks is a function of contact dip. For the subhorizontal limit, 

the history of layers exposed at base level also influences the steepness-erodibility 

relationship. If uplift rate is constant, continuity steady state is perturbed near base 

level, but these perturbations decay rapidly if there is a substantial contrast in 

erodibility. Though examples explored here utilize the stream power erosion model, 

continuity steady state provides a general mathematical tool that may also be useful 

to understand landscapes that develop by other erosion processes. 

_____________________________________________________________________________ 

 

1   Introduction 
 

The formation of landscapes is driven by tectonics and climate, and often profoundly 

influenced by lithology, the substrate on which tectonic and climate forces act to sculpt Earth's 

surface. Much of our interpretation of landscapes, and their relationship to climatic and tectonic 

forces, employs concepts of landscape equilibrium, or steady state. Though there are a variety of 

types of landscape steady state (Willett and Brandon, 2002), topographic steady state, in which 

topography is constant over time, is perhaps most often used in the interpretation of landscapes. 

Understanding of steady state also enables identification of transience within the landscape. In 

particular, concepts of topographic steady state and transient response to changes in climate or 

tectonics are frequently used within studies of bedrock channel morphology. 

 

Bedrock channels are of particular geomorphic interest because they span most of the 

topographic relief of mountainous terrains (Whipple and Tucker, 1999; Whipple, 2004), 

providing the pathways through which eroded material is routed to lowlands and a primary means 

by which the landscape is dissected and eroded. Therefore, bedrock channels exert important 

controls on the relief of mountain ranges and set the pace at which mountainous landscapes 

respond to changes in climate or tectonic forcing. Research on bedrock channels has driven new 

understanding concerning the coupling between mountain building, climate, and erosion (Mol-nar 

and England, 1990; Anderson, 1994; Whipple et al.,1999; Willett, 1999). 

 

The elevation profiles of bedrock channels enable analysis of landscapes for evidence of 

transience, contrasts in rates of tectonic uplift, or the influence of climate (Stock and Mont-

gomery, 1999; Snyder et al., 2000; Lav6 and Avouac, 2001; Kirby and Whipple, 2001; Lague, 

2003; Duvall et al., 2004; Wobus et al., 2006; Crosby and Whipple, 2006; Bishop and Goldrick, 

2010; DiBiase et al., 2010; Whittaker and Boulton, 2012; Schildgen et al., 2012; Allen et al., 

2013; Prince and Spotila, 2013). Within this analysis, erosion rates are typically assumed to scale 

as power law relations of drainage area and slope, as given by the stream power erosion model 

(Howard and Kerby, 1983; Whipple and Tucker, 1999), 
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𝐸 =  ܵ,                               (1)ܣܭ 

 

where 𝐸 is erosion rate, ܭ is erodibility, A is upstream drainage area, S is channel slope, and ݉ and ݊ are constant exponents. While the stream power model has known limitations (Lague, 

2014), it remains the most frequently used tool for channel profile analysis and landscape 

evolution modeling. Under steady climatic and tectonic forcing, channels are typically assumed to 

adjust toward topographic steady state (Hack, 1960; Howard, 1965; Willett and Brandon, 2002; 

Yanites and Tucker, 2010; Willett et al., 2014), where uplift and erosion are balanced and 

topography is constant with time. This framework enables interpretation and comparison of 

stream profiles to identify spatial contrasts in uplift rates or transient responses to changes in 

tectonic or climatic forcing. 

 

Topographic steady state has also been used to explain channel response to substrate 

resistance, generally leading to a conclusion that channels are steeper within more erosion-

resistant bedrock and less steep within more erodible rocks (Hack, 1957; Moglen and Bras, 1995; 

Pazzaglia et al., 1998; Duvall et al., 2004). However, this result depends on an implicit 

assumption of vertical contacts between strata as in Fig. 1a. Strictly speaking, topographic 

equilibrium does not exist when channels incise layered rocks with different erodi-bilities and 

non-vertical contacts (Howard, 1988; Forte et al., 2016). In the case of non-vertical contacts, the 

contact positions shift horizontally as the channel incises, resulting in topographic changes as 

shown in Fig. 1b, c. Studies of bedrock channel morphology have primarily focused on regions 

with active uplift, where rock layers are often deformed and tilted from horizontal. However, a 

substantial percentage of Earth's surface contains subhorizontal strata. Many of these settings also 

contain bedrock channels, with examples including the  Pachmarhi Plateau, the  Baihar  Plateaus, 

and the  Abujhmarh plateaus in India. In such settings, intuition developed from assumptions of 

topographic equilibrium does not necessarily apply. 

 

 
 

Figure 1. Topographic equilibrium in layered rocks. (a) Response of steepness to rock erodibility is 

typically derived from a perspective of topographic equilibrium, with equal vertical incision rates in all 

locations that are balanced by uplift. Topographic equilibrium does not occur in the case of non-vertical 

contacts. (b) For horizontal strata, horizontal retreat rates, rather than vertical incision, must be equal at the 

contact. (c) In general, retreat in the direction parallel to the contact must be equal within both rocks to 

maintain channel continuity. Dashed lines depict former land surface and contact positions, and arrows 

show the direction of equal erosion at the contact. Uplift is not depicted. 

 

Forte et al. (2016) used landscape evolution models to demonstrate that erosion rates vary 

in space and time in potentially complex ways as landscapes incise through layered rocks with 

different erodibilities. These simulations also suggest that deviation from topographic equilibrium 

is strongest for rock layers that are horizontal. While topographic equilibrium does not hold in 

general in layered rocks, here we explore whether landscapes incising layered rocks develop any 

kind of steady-state form, and whether there are regular relationships between steepness and rock 
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erodibility. We show that such a form does exist in some cases, and that it is a type of flux steady 

state that can be derived from an assumption of erosional continuity across the rock contacts. We 

further examine how this steady state depends on the erosion model employed and on the contact 

dip angle, focusing on the case of subhorizontal layers. 
 

2 Erosional continuity and steady state 
 

Conceptual models of land surface response to changing rock type typically employ the 

concept of topographic steady state, which makes an implicit assumption of vertical contacts 

between the different rock types. In topographic steady state, vertical incision rates are matched 

in the two rock types (Fig. 1a). Considering the opposite limit, with horizontal contacts between 

rocks, it seems natural to think about horizontal retreat rates rather than vertical incision rates 

(Fig. 1b). It is plausible that a similar steady state exists where steepness in each rock type is 

fixed, and horizontal retreat rates are equal at the contact. This would not be a topographic steady 

state, but steepness would maintain a one-to-one correspondence with rock erodibility. The land 

surface would retreat horizontally at a fixed rate above and below the contact while undergoing 

continued uplift. Generalizing between these two limiting cases, we consider a possible steady 

state for arbitrary rock contact dip where surface erosion rates are equal in a direction paralleling 

the contact plane (Fig. 1c). We refer to equal retreat in the direction of the contact plane as 

erosional continuity. Mathematically speaking, it means that retreat rate in the direction of a con-

tact is a continuous function across the contact. 

 

Physical reasoning supports the idea that landscapes in layered rocks would tend toward 

erosional continuity. If the upper layer retreats slower than the lower layer in the direction of the 

contact, this produces a steep, or possibly overhanging, land surface at the contact (Fig. 2a). This 

steepening or undercutting will lead to faster vertical erosion in the upper layer and drive the 

system towards continuity (Fig. 2c). Similarly, if the upper layer retreats faster in the direction of 

the contact, this produces a low slope or reversed slope zone near the contact (Fig. 2b) that can 

also push the system toward continuity. Therefore, the same types of negative feedback 

mechanisms between topography and erosion that drive landscapes to topographic steady state 

(Willett and Brandon, 2002) can also plausibly drive landforms near a contact into a state that 

maintains continuity. We refer to this hypothesized type of equilibrium as continuity steady state. 

 
Figure 2. Erosional continuity. (a) If the upper layer at a contact erodes slower, this produces a 

discontinuity at the contact and the resulting steepening or undercutting of the upper layer will drive the 

system toward erosional continuity. (b) If the upper layer erodes faster, this produces a low or reversed 

slope zone near the contact, which will also drive the system toward continuity (c) We hypothesize that, in 

general, topography will tend to approach a state where continuity is maintained. 

 

There are cases in natural systems where continuity is not maintained at all times. For 

example, caprock waterfalls are similar to the case in Fig. 2a. However, even in this case the 

discontinuity cannot grow indefinitely. If the waterfall reaches a steady size then the system has 

once again obtained a state where continuity is maintained in a neighborhood near the contact. 
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Numerical landscape evolution models do not typically allow cases such as Fig. 2a, b. Therefore, 

numerical models are likely to maintain continuity even more rigidly than natural landscapes. 

While these lines of reasoning suggest that both natural systems and landscape evolution models 

may be driven toward erosional continuity, here we consider continuity steady state to be a 

hypothesis that we test against landscape evolution models. Erosional continuity makes 

quantitative predictions about steady-state landscapes that are elucidated below and then tested 

against numerical landscape evolution models.Using the constraint of erosional continuity, one 

can write a very general relationship between surface erosion rates and slopes at a contact 

between two rock types, 

 𝐸భ𝐸మ = 𝑆భ−𝑆𝑐𝑆మ−𝑆𝑐                   (2) 

 

where 𝐸𝑖  and ܵ𝑖 are vertical erosion rates and slopes, respectively, and the index refers to rock 

types 1 and 2. ܵ is the slope of the rock contact and is defined as positive in the downstream 

direction. This relationship results from an assumption of equal retreat rate at the contact within 

both rock layers in a direction parallel to the rock contact plane, as illustrated in Figs. 1c and A1. 

A similar relationship is used by Imaizumi et al. (2015) to examine the parallel retreat of rock 

slopes. If we consider the more specific case of stream power erosion through a pair of weak and 

strong rocks, this leads to 

௦ܵ௦ܭ௪ܵ௪ܭ  = ܵ௪ − ܵܵ௦ − ܵ ,                                                                                                                                          ሺ͵ሻ 

 

where ܭ௪ is the erodibility of the weaker rock, ܭ௦ is the erodibility of the stronger rock, ܵ௪ = tan 𝜃௪ and ܵ௦ = tan 𝜃௦ are the slopes of the channel bed in each rock type, and the contact slope is ܵ௦ = −tan ∅  (derivation in Appendix A). Here we have assumed that erosion processes in both 

rock Types can be expressed with the same exponent, ݊. While n may vary with rock type if 

erosion processes are different (Whipple et al., 2000), fixed ݊ provides a useful starting point to 

understand erosion of layered rocks and is also the most common choice used in landscape 

evolution models. 

 

The implications of the relationship in Eq. (3) are most easily understood by examining 

two limiting cases, a vertical contact limit, which applies whenever contact dip is large compared 

to channel slope, and a subhorizontal limit, which applies when contact dip is small compared to 

channel slope. When the contact slope is much larger than the channel slopes ሺ|ܵ | ≫ ܵ௪, ܵ௦ሻ the 

right-hand side of Eq. (3) is approximately one, and vertical erosion rates in both rock types are 

roughly equal. Rock uplift can thus be balanced by erosion in both segments, and the standard 

relationship between channel slopes in the two rock types, normally derived from topographic 

equilibrium, is recovered, with 

௪ܭ  = ܵ௪ =  ܵ௦.                                                                                                      (4)ܭ

 

If the contact slope is in this steep limit, but not vertical, the contact position and 

topography will gradually shift horizontally with erosion and vertically with uplift, while still 

obeying this relation derived from topographic equilibrium. 

 

For the subhorizontal limit, where channel slopes are much greater than the slope of the contact, ሺܵ௪ , ܵ௦ ≫ |ܵ |ሻ Eq. (3) simplifies to 
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௪ܵ௪−ଵܭ = ௦ܵ௦−ଵ or 𝑆𝑤𝑆𝑠ܭ = ቀ𝐾𝑤𝐾𝑠 ቁ భభ−.                                                                                            (5) 

 

In this case, continuity results in roughly the same rate of horizontal retreat in both rocks at the 

contact, as in Fig. 1b. This contrasts with the standard assumption of equal rates of vertical 

erosion, and leads to unexpected behavior. Specifically, if ݊ <  ͳ, since ܭ௪  >  ௦, higher slopesܭ 

are predicted in weaker rocks, which is in strong contrast to intuition developed from the 

perspective of topographic equilibrium. This results because the rate of horizontal retreat within a 

given rock layer ሺdx/dt ∝ 𝑖ܭ  �ܵ�−ଵ is a decreasing function of slope if ݊ <  ͳ. Steeper slopes 

can retreat more slowly horizontally because a given increment of vertical incision produces less 

horizontal retreat on a steeper slope than a shallower slope. For ݊ <  ͳ vertical erosion does not 

increase quickly enough with slope to offset this effect. Since horizontal retreat rate is an increas-

ing function of erodibility, continuity requires that increases in erodibility are offset by increases 

in slope. For subhori-zontal contacts with ݊ >  ͳ, higher slopes are once again predicted in 

stronger rocks. 

 
The slope ratio (Sw/Ss) is depicted for the vertical and horizontal limits in Fig. 3 as a function 

of n for an erodibility contrast of ܭ௪ =  ௦. In general, contrasts in the slopes within the twoܭʹ 
strata in the subhorizontal case (Eq. 5) are larger than would be predicted using the standard 
formulation for vertical contacts (Eq. 4). In subhorizontal rocks (i.e., whenever rock dip is small 
compared to channel slope), channel slopes may become sufficiently high or low to be driven to 
values outside the range of validity of the stream power model, particularly for cases of ≈Perhaps 
the most common value of n used within landscape evolution models is ݊ =  ͳ; therefore, it is 
also notable that the continuity relation for subhorizontal strata contains a singularity at ݊ =  ͳ 
(Fig. 3). The slope ratio ሺܵ௪/ܵ௦ሻ diverges for ݊ →  ͳ− and approaches zero for ݊ →  ͳ+ . This 
suggests strong dependence of channel behavior on n when n is close to 1. The singularity results 
because for ݊ =  ͳ the horizontal retreat rate is independent of slope and solely a function of 
erodibility and drainage area. Therefore, the channel cannot maintain continuity by adjusting 
steepness. 
 

 
Figure 3. Channel slope response at a subhorizontal contact from an assumption of continuity. The ratio of 

slope within the weaker rock (ܵ௪) and the slope within the stronger rock (ܵ) near a horizontal contact 

(solid line) with differing values of the exponent n in the stream power model. Erodibility in the weaker 

rocks (ܭ௪) is twice that of the stronger rocks (ܭ௦). This subhorizontal case applies when the dip of the 

contact is small compared to channel slope. The dashed line displays the standard topographic equilibrium 

relationship, which applies for cases where the contact slope is much larger than the channel slope. 
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3 Continuity steady-state and stream profiles 
 

The channel continuity relations above apply to channels within the neighborhood of a 

contact. Though there are clear long-term constraints on the relative retreat rates of any two 

contacts, these are not sufficient to determine an entire profile. However, we hypothesize that the 

continuity relation applies along entire profiles, and therefore that it can be used to describe a 

type of equilibrium state that develops in layered rocks. If this is correct then there is a one-to-one 

relationship between erodibility and steepness that is predicted by the continuity relations. Here 

we test this hypothesis using simulations of channel and landscape evolution in horizontally 

layered rock. 

 

3.1   Methods for one-dimensional simulations and analysis 

 

We solve the stream power model using a first-order explicit upwind finite-difference 

method. This method is conditionally stable, and the time step was adjusted to produce a stable 

Courant-Friedrich-Lax number of CFL — 0.9. The explicit upwind scheme has commonly been 

used for prior studies, though it is also known to produce smoothing of channel profiles near 

knickpoints (Campforts and Govers, 2015). The simulations employed 2000 spatial nodes, though 

we also ran a few cases with higher resolution that produced the same results. For simplicity, 

basin area was held fixed over time and was computed as a function of longitudinal distance, with 

ܣ  = ݇𝑎ݔℎ,                                                                                                                                   (6)  

 

where ݇𝑎 =  .ͻ m
033

 and ℎ =  ͳ.. These parameter values are representative of natural 

drainage networks (Hack, 1957; Whipple and Tucker, 1999). Simulations were run with ݊ = ʹ/͵, ݊ =  ͳ, and ݊ =  ͵/ʹ. The value of m in the stream power model was adjusted according to 

the choice of n to assure that the concavity m/݊ =  Ͳ.ͷ, which is typical of natural channels 

(Snyder et al., 2000). Both high-uplift (2.5 mmyr
-1

) and low-uplift (0.25 mmyr
-1

) cases were run. 

Simulation parameters were adjusted to provide a similar number of rock contacts in each case. 

For the high-uplift cases, rock layers were 50 m thick, whereas for the low-uplift cases rock 

layers were 10 m thick. Longitudinal distances were also adjusted, with the high-uplift cases 

simulating 50 km long profiles and the low-uplift cases simulating 200 km long profiles. Specific 

parameter values are provided in Table 1. 

                                               Table 1. Parameters used in the 1-D model  runs. 

Simulation ܭ௦ [m
1-2m

 a
-1

௪ [mܭ    [ 
1-2m

 a
-1

 ] m U [ma
-1

 ] 

High-uplift cases ݊ =  ʹ/͵ 1 × 10
-4 

2 × 10
-4 1/3 2.5 ×10

-3 ݊ =  ͳ 2 × 10
-5 

2.4 × 10
-5 1/2 2.5 × 10

-3 ݊ =  ͵/ʹ 1.5 × 10
-6 

3 × 10
-6 3/4 2.5 × 10

ݓܮ 3- − ݊ ݏ݁ݏ𝑐𝑎 ݐ𝑖݂݈ݑ =  ʹ/͵ 4 × 10
-
 
5 

8 × 10
-5 1/3 2.5 × 10

-4 ݊ = ͳ 2 × 10
-
 
5 

2.4 × 10
-5 1/2 2.5 × 10

-4 ݊ =  ͵/ʹ 3 × 10
-6 

6 ×10
-
 
6 3/4 2.5 × 10

-4 

 

 

Simulation results are most easily visualized in 𝜒 space (Perron and Royden, 2013; 

Royden and Taylor Perron, 2013), where the horizontal coordinate ݔ is replaced with a 

transformed coordinate ݔ: 
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𝜒 = ∫ ( ሻ)/௫ݔሺܣܣ
௫బ dx.                                                                                                                                 ሺሻ 

 

One advantage of this transformation is that the effect of basin area is removed such that 

equilibrium channels that evolve according to the stream power model appear as straight lines in 

this transform space. The relation predicted by Eq. (5) is invariant under the transformation to 𝜒 

space, and therefore the relation also holds if slope is replaced with steepness (gradient in 𝜒 − 

elevation space). Throughout this work, we use a value of A0 = 1 m
2
 in the 𝜒 transforms. 

 

3.2 Comparison of continuity steady-state and simulated profiles 
 

For simulations where ݊ ≠  ͳ, as hypothesized, channel profiles far from base level 

approach a steady configuration, in which channel slope in x space is a unique function of rock 

erodibility, and the profiles exhibit straight-line segments in each rock type (Figs. 4, 5). For the 

horizontally layered case, channel profiles evolve towards a state in which they are maintaining 

the same shape in 𝜒 space while retreating horizontally into the bedrock. For small changes in 

basin area, this is equivalent to a channel maintaining constant horizontal retreat rates. For non-

horizontal rocks, profile shapes will gradually change in 𝜒 space, as the slope of the contact plane 

in 𝜒 space changes with basin area. Animations of the simulations depicted in Figs. 4 and 5 are 

provided in the Supplement. 

 

 
Figure 4. Channel profiles in subhorizontally layered rocks with high uplift (2.5 mmyr

-1
). (a-c) Channel 

profiles in 𝜒-elevation space for cases where ݊ =  ʹ/͵ (a), ݊ =  ͵/ʹ (b), and ݊ =  ͳ (c). (d-f) Channel 

profiles as a function of distance from divide. Each panel contains three time snapshots of the profile with 

uplift subtracted from elevation so that the profiles evolve from left to right. Grey bands represent the weak 

rock layers. The dashed lines (a, b) show the profiles predicted by the continuity steady-state theory (Eqs. 5 

and 8), with filled circles depicting predicted crossing points of the contacts. Channel profiles obtain a 

steady-state shape except near base level, where a constant rate of base-level fall is imposed. For ݊ ≠  ͳ 

the equilibrium profile steepness (slope in 𝜒 space) has a one-to-one relationship with rock erodibility, with 

steeper channels in weaker rock if ݊ <  ͳ. For ݊ =  ͳ there is no unique relationship between erodibility 

and steepness, as continuity cannot be maintained along the entire profile (Matija Perne et al,2017) 
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Figure 5. Channel profiles in subhorizontally layered rocks with low uplift (0.25 mmyr
-1

). (a-c) Channel 

profiles in x-elevation space for cases where ݊ =  ʹ/͵ (a), ݊ =  ͵/ʹ (b), and ݊ =  ͳ (c). (d-f) Channel 

profiles as a function of distance from divide. Grey bands indicate weaker rocks. The low-uplift simulations 

utilize longer distances and thinner rock layers in order to obtain a similar number of rock layer cycles. 

These profile shapes are qualitatively similar to the high-uplift cases (Fig. 4). 

 

For ݊ =  ͳ there is no one-to-one relation between erodibility and steepness, and the 

profiles do not exhibit straight-line segments in each rock type. The ݊ =  ͳ case produces this re-

sult because the horizontal retreat rates are independent of slope and purely a function of 

erodibility and basin area. Consequently, adjustments of slope cannot produce equal horizontal 

retreat rates along the channel. Instead, segments within weaker rocks will retreat more quickly 

than those within stronger rocks. This produces "stretch zones" as a channel crosses from weak to 

strong rocks and "consuming knickpoints" as a channel crosses from strong to weak rocks 

(Royden and Taylor Perron, 2013; Forte et al., 2016). The channels in the simulations ultimately 

reach a steady stepped shape (Figs. 4c, 5c) in which weak rock layers retreat until they intercept 

and undermine the contact with strong layers. Near-vertical cliffs, containing both strong and 

weak rocks, develop at the contact channels. These dynamics are described in more detail by 

Forte et al. (2016). It is important to note that channels in the ݊ =  ͳ subhorizontal case contain 

reaches that are sufficiently steep to negate assumptions behind the stream power model. 

Additionally, the nature of such profiles in simulations may be strongly dependent upon the 

numerical algorithm employed as a result of numerical diffusion of sharp features (Campforts and 

Govers, 2015). 

 

The continuity relation (Eq. 3) predicts a slope ratio rather than absolute values of slope 

in each rock type. The predicted slope ratio matches the slopes in the simulation at sufficient 

distances from base level. Notably, the counterintuitive prediction that profiles would be steeper 

in weaker rocks for ݊ <  ͳ is confirmed by the simulations (Figs. 4a, 5a). However, absolute 

slopes, and therefore entire profiles, can be predicted by realizing that continuity steady state is 

actually a type of flux steady state (Willett and Brandon, 2002), where the rate of uplift of rock 

into the domain is equal to the rate of removal of material by erosion. First, it must be noted that 
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the weak and strong rocks experience different rates of vertical incision in the equilibrium state 

(Forte et al., 2016). However, since the shape of the landscape in x space repeats with each pair of 

rock layers, the long-term average incision rate must be the same at all horizontal positions on the 

stream profile. Furthermore, the topography is not growing or decaying over time after continuity 

steady state is reached, which means that the average incision rate at all positions is equal to the 

uplift rate or, equivalently, that the system is in flux steady state. This conclusion that the long-

term average rate of vertical incision at each point along the profile is equal to the uplift rate leads 

to a relation for the erosion rate in a given layer, 

 𝐸ଵ = 𝑈 ሺ𝐻ଵ/𝐻ଶሻ + ሺܭଵ/ܭଶሻሺܵଵ/ܵଶሻͳ + 𝐻ଵ/𝐻ଶ ,                                                                                                    ሺͺሻ  
 

where 𝐸ଵ is the erosion rate of one rock layer, 𝐻௧ is the thickness of the 𝑖 layermeasured in the 

vertical direction, and 𝑈 is the uplift rate (see derivation in Appendix B). Entire theoretical 

profiles can be constructed using this relationship, in combination with the stream power model 

and the continuity relation (Eq. 5), which provides the slope ratio. At a sufficient distance from 

base level, these profiles closely match the simulations in cases where ݊ ≠  ͳ (Figs. 4a, b, 5a, b), 

further confirming that continuity state is a type of flux steady state. In addition to describing 

behavior near contacts, continuity steady state also describes portions of the profile that are 

distant from contacts. For subhorizontal rocks this often produces a landscape that is quite 

different from that which would be predicted by topographic steady state (Fig. 3). 

 

In continuity steady state the slopes in both rock types are different, in general, than the 

slopes that would be predicted by topographic steady state. Combining Eqs. (1), (5), and (8) 
 

gives  ܵଵ,c୭୬୲ܵଵ,୲୭୮୭ = ቆሺ𝐻ଵ/𝐻ଶሻ + ሺܭଵ/ܭଶሻଵ/ሺଵ−ሻͳ + 𝐻ଵ/𝐻ଶ ቇଵ/                                                                                            ሺͻሻ 

 

where ܵଵc୭୬௧ and ܵଵ୲୭୮୭ are the slopes for rock layer 1 that would be obtained under 

continuity steady state and topographic steady state, respectively. Setting the thicknesses equal, 𝐻ଵ =  𝐻ଶ, and using an example case of ܭ௪ =  ௦, we plot the ratio of continuity andܭʹ 

topographic steady-state slopes for both the weak and strong layers (Fig. 6). For  ݊ <  ͳ there is 

always a strong difference between the continuity and topographic steady-state slopes in both 

rocks. For ݊ >  ͳ the weak rock in continuity steady state never has a slope more than a factor of 

two different than the slope that would be predicted by topographic steady state. For large n the 

continuity steady-state slopes of both weak and strong rock layers obtain the same slope as they 

would in topographic steady state. Additionally, if one layer is much thicker than the other (e.g., 𝐻ଵ  →  ∞, then the slope of this layer approaches the slope that it would have under topographic 

steady state.Continuity steady state predicts that the ratios of slopes in the weak and strong layers 

are independent of layer thickness (Eq. 5). However, it also predicts that erosion rates and abso-

lute slope values in both rocks are dependent on the thickness of the layers (Eqs. 8, 9). To test this 

prediction, we resimu lated the high-uplift cases above with ݊ =  ʹ/͵ and ݊ =  ͵/ʹ and changed 

the layer thickness. For ease of comparison, the total thickness of both layers was kept equal to 

100 m, but the weak layer thickness was increased to 90 m. As predicted, the continuity steady-

state slopes vary with relative layer thickness (Fig. 7). The thicker of the two rock layers adjusts 

its slope toward the slope that it would have under topographic steady state. Increasing the 

percentage of weak rock adjusts both slopes in such a way that it reduces the total topography 

(Fig. 7). 
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Figure 6. An example case of the ratio of slopes predicted by continuity and topographic steady states. This 

example assumes a choice of equal rock thicknesses in both rock types and a weak rock erodibility that is 

twice that of the strong rock. Contrasts are in general strongest for ݊ <  ͳ and gradually disappear for large ݊. 
 

 
Figure 7. The influence of relative layer thickness on slopes in continuity steady state. If the relative 

thickness of the strong and weak layers is changed, the slopes that are far from base level in both rocks 

adjust correspondingly (solid lines), as predicted by continuity steady state. Grey bands depict the locations 

of weak rocks in the differing thickness model. The dashed lines depict channel profiles for simulations 

with equal layer thickness but the same erosional parameters. Increasing the weak layer percentage reduces 

topography overall. 

 

3.3   Dynamics of base-level perturbations 

 
Continuity steady state is perturbed near base level, because a constant rate of base-level 

fall is imposed and continuity steady state requires vertical incision at different rates in each rock 

type. Despite this discrepancy between base-level topographic equilibrium and continuity steady 

state, theoretical profiles produced using Eqs. (3) and (8) closely match the shapes of the profiles 

for the cases where n is not one. Therefore, these perturbations decay rapidly away from base 
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level in the simulated cases. However, a question remains as to what controls this decay length 

scale, and how typical the cases are that we have simulated. 

 

In a horizontally layered rock sequence, a segment of stream profile with erosion rate 

equal to uplift is continuously developing at base level. The slope of this base-level segment in 𝜒 

-space is given by 

 ௗ𝑧ௗ𝜒 = ቀ 𝑈𝐾బቁଵ/.                                                                                                                            (10) 

 

The difference between this slope and the continuity steady-state slope produces a knickpoint that 

propagates upstream with a celerity in 𝜒 space given by 

ܥ  = 𝑈ௗ𝑧/ௗ௫ = 𝑈ሺ−ଵሻ/ ܭଵ/ܣ/
               (11) 

 

As the knickpoint crosses into the other rock type, continuity demands that ܥ does not change, 

because ܥ is identical to horizontal retreat rate and continuity requires this to be equal across a 

horizontal contact. Since celerity is a monotonic increasing function of erodibility, knickpoints 

formed at base level in the stronger rock are slower than those formed in the weak rock. 

Therefore, the weak rock knickpoints catch up to the strong rock knickpoints, and the profile 

damps toward equilibrium as the two interact. Consequently, we can estimate the damping length 

scale as the x distance at which the knickpoints generated in weak rock at base level catch up to 

the knickpoints generated in strong rock at base level. 

 

The strong rock knickpoint begins with a head start equal to the 𝜒 distance spanned by the strong 

rock segment, which we call 𝜒௦,Ͳ and is given by 𝜒௦,Ͳ = 𝐻௦ ቆܣܭ𝑈 ቇଵ                                                                                                                                     ሺͳʹሻ 

 

The strong rock knickpoint will travel an additional distance 𝜒௦,+ before the weak rock 

knickpoint catches up, and these distances are related by 

 𝜒௦,Ͳ + 𝜒௦, ௪ܥ+ = 𝜒௦, ௦ܥ+ ,                                                                                                                                ሺͳ͵ሻ 

 

where ܥ௦ and ܥ௪ are the knickpoint celerities in the strong and weak rocks, respectively. The 

damping length scale, 𝜆 = 𝜒௦,Ͳ + 𝜒௦, +, is the distance from base level over which the weak rock 

knickpoint catches the strong one and can be solved for by combining Eqs. (11)-(13), leading to 

 𝜆 = 𝐻௦ ቆܭ௦ܣ𝑈 ቇଵ/ [ͳ + (ሺܭ௪/ܭ௦ሻଵ/ − ͳ)−ଵ].                                                                               ሺͳͶሻ 

 

To generalize the damping behavior of the base-level perturbations it is useful to analyze a 

dimensionless version of 𝜒, which is normalized by 𝜒௦,Ͳ 

 𝜆∗ = 𝜆𝜒௦, = ͳ + ௦ܭ௪ܭ)] )ଵ/ − ͳ]−ଵ                                                                                                 ሺͳͷሻ 
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It can be seen that the damping length scale is primarily a function of the relative erodibilities of 

the two rock types. When the contrast is large, damping occurs rapidly, whereas when the 

contrast is small the damping length scale is large. However, in this latter case there is also very 

little contrast in steepness, since the erodibilities are similar. Since 𝜒௦, is the 𝜒 length of the 

strong rock reach near base level at the moment that the weak layer becomes exposed, 𝜒௦,is less 

than but on the same order of magnitude as the profile distance spanned by a pair of weak and 

strong rock layers. Therefore, 𝜆∗ can be interpreted as a conservative order of magnitude estimate 

of the number of pairs of weak and strong rocks that are required to produce damping. 

 

That is, if 𝜆∗ ~ 1 then damping should occur within a single pair. We show 𝜆∗ as a function of the 

erodibility ratio for several choices of n in Fig. 8. Here it can be seen that if the erodibility ratio is 

greater than about two or three then 𝜆∗ <2, or, equivalently, damping occurs for parts of the 

profile that are separated from base level by more than two sets of contacts between the two rock 

types. If the erodibility ratio is greater than about ten, then 𝜆∗ <1, and damping occurs within a 

single pair of the two rock types. 

 
Figure 8. The dimensionless damping length scale, 𝜆∗, as a function of erodibility ratio. Damping of base-

level perturbations is strong when the erodibility ratio is greater than 3. 𝜆∗ can be interpreted as roughly the 

number of pairs of strong and weak rock layers that base-level perturbations must pass through before sub-

stantial damping toward continuity steady state. 

 

To illustrate this damping behavior, we run two simulations with somewhat longer damping 
length scales. Both simulations have profile lengths of 500 km, uplift rates of 

               Table 2. Parameters used in the FastScape model runs. 

Simulation ܭ𝑓௪ [m
1-3m

 a
-1

+
m
𝑓௦ [mܭ [

1-3m
 a

-1
+

m
] m P [ma

-1
] 𝑈[ma−ଵ] ݊ =  ʹ/͵ 1.2 × 10

𝑓௪ 1/3 1 2.5 × 10ܭ • 0.5 4-
-3 ݊ =  ͳ 1.5 × 10

𝑓௪ܭ • 0.83333 5-  1/2 1 2.5 × 10
-3 ݊ =  ͵/ʹ 1 × 10

𝑓௪ 3/4 1 2.5 × 10ܭ • 0.5 6-
-3 
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2.5 mmyr
-1

, repeating rock layers with a 50 m thickness, and weak rock layers that have an 
erodibility of 1.5 times the strong rock layers. One case uses ݊ = ͳ.ʹ, ݉ =  Ͳ., and ܭ௦= 1.5 × 
10

-5
, whereas the second case uses ݊ =  Ͳ.ͺ, ݉ =  Ͳ.Ͷ, and ܭ௦  =  ͳ × 10

-4
. For the ݊ =  ͳ.ʹ 

case, 𝜆 =  ʹ.Ͷͷ, and for the ݊ =  Ͳ.ͺ case, 𝜆 = 2.25. Profiles are shown for these simulations in 
Fig. 9. Fast knickpoints catch the slow knick-points at roughly the calculated length scale (Fig. 
9c, d). Note that the knickpoints we are describing here are breaks in steepness, which can be 
downstream decreases or increases in steepness. The knickpoint interference can be seen as the 
gradual reduction in the size of a topographic equilibrium slope patch near base level that reaches 
zero size at approximately 𝜒 =  𝜆. This process is visualized more clearly in animations in the 
Supplement that depict the damping length scale. Beyond this damping length scale, some minor 
perturbations remain, and one can see fast and slow knickpoints migrating through the upper parts 
of the profile as the system evolves. However, beyond 𝜆 the theoretical profiles derived from 
continuity and flux steady state is a good approximation to profile shape. 

 

4 Full landscape simulations 

 
To determine whether continuity steady state is obtained within whole landscape models, 

or whether addition of hills-lope processes might eliminate it, FastScape V5 (Braun and Willett, 

2013) was used to simulate stream power erosion coupled to an entire landscape model. All 

simulated cases employ a constant rock uplift rate and horizontal rock layers with alternating high 

and low erodibility. 

 
Figure 9. Simulations of knickpoint propagation and damping from base level. Entire equilibrium profiles 

are depicted for cases where ݊ =  ͳ.ʹ (a) and ݊ =  Ͳ.ͺ (b). Panels (c) and (d) show zoomed-in figures that 

depict three separate time steps (dotted, dashed, and then solid) as fast knickpoints catch up with slow 

knickpoints at the calculated damping length scale (𝜆, thick red line). The interaction of the two 

knickpoints can be visualized as the reduction in size of a slope patches that are at the topographic 

equilibrium slope as these patches approach 𝜆 



15 

 

The stream power model used in FastScape has the form 

 𝐸 =  𝑓𝛷ܵ,                                                                                                                               (16)ܭ

 

where Φ is discharge, calculated as the product of the drainage area and the precipitation rate P. 

Each of the three presented model runs uses two different erodibility coefficients, ܭ𝑓௪ for the 

weak rock and ܭ𝑓௦for the strong rock, in place of ܭ𝑓. For each one of them, a grid of 3000 x 3000 

pixels representing 100 km × 100 km is simulated. The initial condition used is a slightly 

randomly perturbed flat surface at base level. The boundary condition is open on all sides. 15 

000m of uplift is simulated in 60000 time steps. The weaker rock is exposed for the first 10 800 

m of the uplift, allowing an initial drainage network to establish. Afterwards, a layered rock 

structure starts to be exposed, with alternating layers of 200 m of the stronger rock and 300 m of 

the weaker rock. The main difference between the model runs is in the slope exponent n, with 

cases using ݊ =  ʹ/͵, ݊ =  ͳ, and ݊ =  ͵/ʹ. A listing of numerical parameters is provided in 

Table 2. The necessary time step was calculated from the uplift rate and the ratio of total uplift to 

the number of time steps. 

 

Floating-point digital elevation models (DEMs) were produced for the final time step for 

each FastScape simulation. Using the Landlab landscape evolution model (Tucker et al., 2013) to 

calculate flow routing, channel profiles were extracted from the FastScape DEMs for each case 

of n. Land-lab was extended to enable calculation of x values for each channel. 𝜒 plots were then 

generated for 50 channels in each simulation and are shown in Fig. 10. The continuity equilib-

rium state described above is also reflected within the full landscape evolution model, and plots 

of elevation versus 𝜒 for channels within each model demonstrate similar relationships as 

displayed in Fig. 4a, c, e. 

 

5 Discussions 
 

Topographic steady state is not attained within layered rocks with non-vertical contacts 

since the spatial distribution of erodibility changes in time (Howard, 1988; Forte et al., 2016). 

Forte et al. (2016) show that departures from topographic steady state are greatest when the layers 

have contacts that are near horizontal. They use simulations of landscape evolution with a stream 

power erosion model with ݊ =  ͳ. These simulations demonstrate that erosion rates vary across 

the landscape in complex ways, that there is no direct relationship between rock erodibility and 

erosion rate, and that erosion rates can be greater or less than the uplift rate. They also detect 

distinct differences in landscape development between cases where either the strong or weak rock 

is exposed first. In the case of a weak rock on top of a strong rock, a tapered wedge of weak rock 

forms on top of a steep retreating escarpment in the strong rock. When strong rock is on top of 

weak rock, the weak rock undercuts the strong rock and forms an extremely steep zone near the 

contact. 

 

Our simulations and analysis support the conclusions of Forte et al. (2016) on the 

dynamics of the ݊ =  ͳ case. However, we also show that these dynamics result specifically 

because the rate of horizontal retreat, or equivalently the knickpoint celerity, is independent of 

slope when ݊ =  ͳ. Con- sequently, the topography is unable to maintain a state of erosional 

continuity, and therefore topography is unable to reach continuity steady state. Landforms 

developed in layered rocks are driven toward continuity steady state by the same type of negative 

feedback mechanisms between topography and erosion that generate topographic steady state. In 

fact, topographic steady state is a special case of continuity steady state. For stream power 

erosion with ݊ ≠  ͳ, landscapes are able to adjust slope to maintain continuity across multiple  
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Figure 10. Results of the FastScape simulations. Lines in the left-hand panels are profiles extracted from 

the DEMs. Simulations were run at constant uplift with alternating bands of weak and strong rocks. Grey 

bands indicate the weaker rocks. The individual panels show simulations where 𝒏 =  ʹ/͵ (a), 𝒏 =  ͵/ʹ (c), 

and 𝒏 =  ͳ ሺe). The dashed lines (a, c) show the equilibrium profile predicted by the theory, with circles 

depicting predicted crossing points of the contacts. Profiles obtain similar shapes as in the 1-D simulations 

(Fig. 2b-d). Panels (b), (d), and (f) show DEMs of the landscapes formed in each simulation. Color 

represents elevation, with white being high. 
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rock layers. Therefore, a type of equilibrium landscape form does develop sufficiently far from 

base level when ݊ ≠  ͳ,. 
 

If we compare the ݊ ≠  ͳ,case with the conclusions above concerning the ݊ =  ͳ cases, 

several similarities and differences emerge. For both cases, it is true that topographic steady state 

is only strictly reached if contacts are vertical. Also, for both cases the patterns of steepness in the 

landscape diverge most strongly from those predicted by topographic steady state when rocks are 

horizontally layered. However, for ݊ ≠  ͳ, erosion rates and steepnesses do exhibit one-to-one 

relationships with rock erodibility. In our simulations, we do not see any dependence of 

topography on the order of exposure of the layers, unlike with the ݊ =  ͳ case. Considering two 

rock types, one strong and one weak, erosion rates bracket the uplift rate, with one rock 

exhibiting erosion rates higher than uplift and the other lower than uplift. For the sub-horizontal 

case, the weak rock erodes faster when ݊ <  ͳ and the strong rock erodes faster when ݊ >  ͳ 

(Fig. 6). Contrasts in erosion rates become small for large ݊ (Fig. 6) and very large when ݊ ≈ ͳ. 

 

As noted by Forte et al. (2016), variability in erosion rates across the landscape can 

produce bias in detrital records, as zones exhibiting faster erosion will contribute a larger 

proportion of the exported sediment than would be calculated based on areal estimates. Since the 

framework developed predicts a regular relationship between erosion rates and erodibility for ݊ ≠  ͳ, it may help constrain uncertainties in such records. The long-term average erosion rate at 

any location is equal to uplift rate, and therefore continuity steady state is a type of flux steady 

state. Because of this, there is also a simple rule that emerges when considering erosion rates as a 

function of rock type. For the portion of the landscape that is in flux steady state, the amount of 

material removed from a given rock layer within a period of time will be proportional to the 

fraction of the topography that is spanned by that layer, as opposed to its areal extent. For ex-

ample, in our simulations where each rock type makes up half of the topography, there is an 

approximately equal volume of material eroded from each rock type within a given time step. 

 

When contacts between rocks dip at slopes much greater than the channel slope, then the 

vertical contact limit from Eq. (4) applies and topography approaches the form that would be 

predicted by topographic steady state. The considerations introduced here become important as 

rock dips approach values comparable to or less than channel slope. This subhorizontal limit, 

given by Eq. (5), is most likely to apply for rocks that are very near horizontal and/or channels 

that are very steep. Therefore, these considerations are most applicable in cratonic settings, in 

headwater channels, or when considering processes of scarp retreat in subhorizontal rocks 

(Howard, 1995; Ward et al., 2011). In the subhorizontal limit, slope contrasts are larger than 

would be predicted by topographic steady state (Fig. 3). In the case of ݊ <  ͳ, slope patterns in 

continuity steady state are also qualitatively different than those predicted by topographic steady 

state, with steeper channel segments in weaker rocks. Since the relationship between erodibility 

and steepness within layered rocks is a function of contact dip, this may complicate the determi-

nation of erodibility using channel profile analysis in settings where the subhorizontal limit 

applies. 

 

For ݊ ≈ ͳ, slope contrasts become extreme, which is particularly important since ݊ =  ͳ 

is the most common value used in landscape evolution models. In this case, large slope contrasts 

at contacts may accentuate numerical dispersion. It also must be realized that ݊ =  ͳ is quite a 

special case in subhorizontal rocks, and the rest of the parameter range for ݊ results in 

substantially different dynamics and steady state. Field studies have suggested that ݊ =  ͳ, where 

knick-point retreat rate is independent of slope, can explain the distribution of knickpoints within 

drainage basins (Crosby and Whipple, 2006; Berlin and Anderson, 2007). However, it is also 
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clear from our analysis that with ݊ =  ͳ in subhorizontal rocks channels near contacts obtain a 

steep state, where the stream power model will break down. 

 

During constant uplift, channels cannot attain continuity steady state at base level, 

because it requires different vertical incision rates in each rock type. However, the perturbations 

introduced by stream segments in topographic equilibrium at base level rapidly decay over a 

length scale that is primarily a function of the ratio of rock erodibilities, with larger erodibility 

contrasts resulting in shorter decay lengths. Practically speaking, for rocks that have erodibilities 

sufficiently different to have a strong effect on the profile, base-level perturbations of continuity 

steady state decay after a couple rock contacts are passed. 

 

Though steepness ratios are a fixed function of rock erodi-bility in continuity steady state, 

absolute steepness values depend on rock layer thickness. Since natural systems will not generally 

have regular patterns of thickness or erodibility, this has implications for the ability of natural 

systems to approach continuity steady state. As new rock layers with different thicknesses or 

erodibilities are exposed at base level, the absolute steepness values that would represent 

continuity steady-state change. Therefore, continuity steady state may often represent a moving 

target, where the landscape is constantly adjusting toward it but never reaching it. The intro-

duction of rock layers with varying thickness and erodibility can produce transience in landscapes 

that are experiencing otherwise stable tectonic and climate forcing. This only applies, however, 

for absolute steepness values. Steepness ratios, and their relationship to erodibility, would be 

expected to be relatively constant in time if sufficiently far from base level. Since the relationship 

between erodibility and steepness will change in both time and space as new layers are exposed at 

base level, this may confound attempts to identify erodibility values using channel profiles within 

steep channels in subhorizontal rocks. However, since steepness ratios do not depend on these 

dynamics, analysis ofsteepness ratios derived from profiles, rather than absolute steepness values, 

may enable quantification of the relative erodibility of layers. 

 

We speculate that the simulated dynamics in subhorizontal rocks provide a potential 

means to generate caprock waterfalls, a feature that has long fascinated geologists (Gilbert, 1895). 

Caprock waterfalls, such as  Chitrakut Falls, have a resistant caprock layer that is underlain by a 

weaker rock. The waterfall has the caprock at its lip, followed by a vertical, or often overhanging, 

face within the weak rock. This is a case of a very steep channel within a highly erodi-ble rock, 

which would not be predicted from topographic equilibrium and stream power erosion. Such a 

state is predicted by the continuity relation developed here for subhori-zontal layers with ݊ <  ͳ, 

and somewhat similar features develop in the case of ݊ =  ͳ. Values of n might be expected to be 

less than one for erosion processes active in the weak rock layer, such as plucking (Whipple et al., 

2000). Furthermore, caprock waterfalls typically form in relatively horizontal strata, and are 

common within steep headwater channels, which are the settings where differences between topo-

graphic and continuity steady state become important. The stream power model arguably does not 

apply to waterfalls (Lamb and Dietrich, 2009; Haviv et al., 2010; Lague, 2014), and a variety of 

erosion mechanisms that are independent of stream power can act in such an oversteepened reach, 

such as gravity failure, freeze-thaw, shrink-swell, and seepage weathering. However, starting 

from an initial condition of low relief, topographic equilibrium and stream powererosion would 

not predict a channel to evolve toward the caprock waterfall state. In contrast, the framework 

presented here naturally produces features resembling caprock waterfalls from considerations of 

landscape equilibrium. While further work would be needed to test this hypothesis, it remains 

plausible that caprock waterfalls are the result of channels steepened within weaker rocks to 

maintain continuity, even if, once the channel becomes sufficiently steep, stream power erosion 

no longer provides a good approximation to erosion rates. The concept of continuity could also be 

applied to other, more mechanistic, erosion models, as the relation provided by Eq. (2) is 
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independent of erosion model. However, continuity relations are most likely to provide insight for 

simple erosion models where analytical solutions can be derived, as with stream power erosion. 

With more complex models, the results of numerical landscape evolution models could be 

compared against the continuity relation to test whether a similar continuity steady state is 

attained. 

 

Though the focus of this work is on bedrock channel profiles in layered rocks, the 

concepts of continuity and flux steady state can be applied in general to any mathematical model 

for erosion. Much like topographic steady state, both continuity and flux steady state result from 

negative feedback within the uplift-erosion system that drives it toward steady state as uplift and 

erosion become balanced. Such feedback mechanisms are likely to be present within most 

erosional models. Though topographic steady state has been a powerful theoretical tool to 

understand landscapes, the generalized concept of erosional continuity may prove more useful in 

interpreting steep landscapes in subhorizontal rocks. 

 

6 Conclusions 

 

Topographic steady state has provided a powerful tool for understanding the response of 

landscapes to climate, tectonics, and lithology. However, within layered rocks, topographic 

steady state is only attained in the case of vertical contacts. In topographic steady state, vertical 

erosion rates are equal everywhere, and steepness adjusts with rock erodibility to produce equal 

erosion. Here we generalize this idea using the concept of erosional continuity, which is a state 

where retreat rates of the land surface on either side of a rock contact are equal in the direction 

parallel to the contact rather than in the vertical direction. Using a stream power erosion model 

with ݊ =  ͳ, prior work showed that erosion rates exhibit transient and complex relationships 

with rock erodibil-ity (Forte et al., 2016). Our work suggests that these complex and transient 

effects result because adjustments in steepness cannot produce a state of erosional continuity 

when ݊ =  ͳ. In cases where ݊ ≠ ͳ, erosional continuity can be attained, and the landscape 

sufficiently far from base level exhibits one-to-one relationships between steepness and 

erodibility that are predicted by continuity. We refer to this as continuity steady state, and show 

that it is a type of flux steady state. Results from 1-D and 2-D landscape evolution models 

confirm the predictions of the erosional continuity equations. 

 

For continuity steady state, the relationships between rock erodibility and landscape 

steepness differ most from topographic steady state when the rock contacts are subhorizon-tal, 

that is, when contact dips are less than channel slope. In the subhorizontal case, contrasts in 

steepness are larger than predicted by topographic steady state. These contrasts are largest when ≈ and in fact may create sufficiently steep channels in one of the rock layers to negate the 

applicability of the stream power erosion model. For ݊ ≈  ͳ, numerical dispersion may also 

influence the time evolution of the topography because of the large slope contrasts. When ݊ <  ͳ, 

steepness patterns are also qualitatively different than those predicted by topographic steady state, 

with steeper channel segments in weaker rocks. In continuity steady state, erosion rates bracket 

the uplift rate and display a regular relationship with erodibility. This may assist in quantifying 

the uncertainty and bias within detrital records that can result from different erosion rates in 

different rock types (Forte et al., 2016). Relationships between erodibility and steepness are both 

a function of rock dip and the history of layers exposed at base level, which may confound 

attempts to identify erodibility values using stream profile analysis in some settings. For 

subhorizontal rocks, continuity steady state is not attained at base level. However, the 

perturbations to con- tinuity steady state that are introduced at base level decay rapidly when 

there is a contrast in erodibility of more than a factor of 2 to 3. We speculate that the framework 
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developed here provides a possible mechanism for the development of caprock waterfalls, since it 

predicts steep channel reaches within weak rocks. Though we focus on stream power erosion, the 

concept oferosional continuity is quite general, and may provide insight when applied to 

othererosion models. 

 

Appendix A: Derivation of the continuity relation 

 

Here we detail how the constraint of channel continuity can be used to derive the 

relationship given in Eq. (3). Consider a planar contact between rock types with different 

erodibilities. We label the downstream and upstream erodibility with ܭଵ and ܭଶ. Downstream and 

upstream slopes are ܵଵ and ܵଶ; the slope of the contact is Sc; and their respective slope angles are 𝜃ଵ, 𝜃ଵ, and 𝜃  (see Fig. A1). 

 
Figure A1. Geometric relationships used to derive the equation for continuity of the channel at a contact 

between two rock types. Note that the slope of the contact plane ሺܵ =—  tan 𝜙ሻ is defined as positive 

when the contact dips in the downstream direction. 

 

In this section we use the subscript i to denote either 1 or 2, as the relationships are valid for the 

channel within both rock types. Erosion at a rate 𝐸𝑖 in the vertical direction, as is calculated by 

the stream power model, can be transformed to an erosion rate ܤ𝑖  that is perpendicular to the 

channel bed using the slope of the channel bed, 𝜃𝑖, with ܤ𝑖 =  𝐸𝑖 cos 𝜃𝑖  (see Fig. A1). The contact 

and the channel intersect at angle 𝜃𝑖 + 𝜙, and thus the rate of exposure of the contact plane is 

 ܴ𝑖 = 𝑖ୱi୬ሺ 𝜃𝑖+𝜙ሻ = 𝐸𝑖 c୭ୱ 𝜃𝑖ୱi୬ሺ 𝜃𝑖+𝜙ሻ.                                                                                                         (A1) 

 

For the case where  𝜃𝑖 + 𝜙 > 𝜋/ʹ the diagram changes, but these same relationships can be 

recovered using sin (𝜋 —   𝜃𝑖 —  𝜙) = sin( 𝜃𝑖 + 𝜙). Continuity of the channel bed requires that 

the contact exposure rates ܴଵ and ܴଶ are equal, which gives 

 𝐸భc୭ୱ 𝜃𝑖ୱi୬ሺ 𝜃𝑖+𝜙ሻ = 𝐸మ c୭ୱ 𝜃మୱi୬ሺ 𝜃మ+𝜙ሻ                                                                                                                  (A2) 

 

Using a trigonometric identity for angle sums leads to 
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𝐸భc୭ୱ 𝜃𝑖ୱi୬ 𝜃భ c୭ୱ 𝜙 + ௦𝜃భ ୱi୬ ϕ = 𝐸మ c୭ୱ 𝜃మୱi୬ 𝜃మ c୭ୱ 𝜙 + ௦𝜃మ ୱi୬ ϕ.                                                                          (A3) 

 

Simplifying the fractions and multiplying both sides of the equation with cos 𝜙 we get 

 𝐸భ୲a୬  𝜃భ+୲a୬ 𝜙 = 𝐸మ୲a୬  𝜃మ+୲a୬ 𝜙.                                                                                                          (A4) 

 

Solving for the ratio of erosion rates in the two rock types and converting to slopes rather than 

angles, using a sign convention where both contact and bed slopes are positive in the downstream 

direction, the relation becomes 𝐸భ𝐸మ = 𝑆భ−𝑆𝑐𝑆మ−𝑆𝑐.                                                                                                                                    (A5) 

 

If erosion rates are given by the stream power model, then it follows that 𝐾భ𝑆భ𝐾మ𝑆మ = 𝑆భ−𝑆𝑐𝑆మ−𝑆𝑐                                                                                                                                 (A6) 

 

Which is identical to Eq. (3) with the general subscripts 1 and 2 replaced with s and w for strong 

and weak. 

 

Appendix B: Derivation of the erosion relation 
 

Using the stream power model, erosion rates in two channel segments above and below a contact 

are 𝐸ଵ = ܵଵand Eଶܣଵܭ = Kଶܣܵଶ,                                                                                             (B1) 

 

where ܣ is the recharge area. Taking the ratio of both equations at an arbitrary basin area, we get 

 𝐸భ𝐸మ = 𝐾భ𝐾మ ቀ𝑆భ𝑆మቁ.                                                                                                                               (B2) 

 

We define 𝐻ଵ and 𝐻ଶ to be the thicknesses of the rock layers measured in the vertical direction. If 

flux steady state is assumed, then the average erosion rate equals the uplift rate 𝑈. Therefore, the 

time needed to uplift a distance equal to the sum of the thicknesses of the two layers equals the 

sum of the times needed to erode through the two layers: 

 𝐻భ+𝐻మ𝑈 = 𝐻భ𝐸భ + 𝐻మ𝐸మ .                                                                                                                         (B3) 

 

Combining Eqs. (B2) and (B3) gives an expression for the erosion rate in a given rock: 

 𝑬 = 𝑼 𝑯/𝑯+𝑲/𝑲ሺ𝑺/𝑺ሻ𝒏+𝑯/𝑯 .                                                                                                         
(B4) 

 
While flux steady state seems like a reasonable assumption, simulations also confirm that the 

erosion rates predicted by Eq. (B4) are approached within a few contacts above base level. 

Similarly, simulations that alternate uplift rate over time to match the erosion rate of the rock type 

currently at base level, as given by Eq. (B4), obtain straight-line slopes in x -elevation space all 

the way to base level. This confirms that the disequilibrium seen in the profiles in Fig. 4b-d is 

produced by the difference between the constant uplift rate and the equilibrium incision rates 

experienced in each layer. 
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