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 The Denwa River of Pachmarhi. Transiency is not limited to individual rivers but also affects larger 

systems such as the Pachmarhi of India where the landscape may never reach a condition of steady state 

due to the permanent asymmetry in vertical uplift, climatically driven denudation and horizontal tectonic 

advection. 
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Abstract. Landscape evolution models allow studying the earth surface 

response to a changing climatic and tectonic forcing. While much effort has 

been devoted to the development of Landscape evolution models that simulate 

a wide range of processes, the numerical accuracy of these models has 

received much less attention. Most Landscape evolution models  use first order 

accurate numerical methods that suffer from substantial numerical diffusion. 

Numerical diffusion particularly affects the solution of the advection equation 

and thus the simulation of retreating landforms such as cliffs and river knick 

points with potential unquantified consequences for the integrated response of 

the simulated landscape. Here we present topotoolbox landscape evolution 

models, a spatially explicit, raster based landscape evolution model for the 

study of fluvial eroding landscapes in TopoToolbox 2. Topotoolbox landscape 

evolution models  prevents numerical diffusion by implementing modulating a 

higher order flux limiting total volume method that is total variation 

diminishing (total variation diminishing -finite volume method) and solves the 

partial differential equations of river incision and tectonic displacement. We 

show that the choice of the total variation diminishing -finite volume method 

to simulate river incision significantly influences the evolution of simulated 

landscapes and the spatial and temporal variability of catchment wide erosion 

rates. Furthermore, a 2D total variation diminishing -finite volume method 

accurately simulates the evolution of landscapes affected by lateral tectonic 

displacement, a process whose simulation is hitherto largely limited to 

Landscape evolution models with flexible spatial discretization. By providing 

accurate numerical schemes on rectangular grids, topotoolbox landscape 

evolution models  is a widely accessible landscape evolution model that is 

compatible with GIS analysis functions from the TopoToolbox interface. 

______________________________________________________________________________ 

 

1. Introduction 

 
[1] Landscape evolution models simulate how the earth surface evolves in response to 

different driving forces including tectonics, climatic variability and human activity. Landscape 

evolution models are integrative as they amalgamate empirical data and conceptual models into a 

set of mathematical equations that can be used to reconstruct or predict terrestrial landscape 

evolution and corresponding sediment fluxes (Howard, 1994). Studies that address how climate 

variability and land use changes will affect landscapes on the long term increasingly rely on 

Landscape evolution models (Gasparini and Whipple, 2014). 

 

[1.2] A large number of geophysical processes act on the earth surface, mostly driven by 

gravity and modulated by the presence of water, ice and organisms (Braun and Willett, 2013). 

These processes critically depend on the availability potential energy, brought into or withdrawn 

from the landscape by tectonic forces (Wang et al., 2014). Weathering and erosion respond to 

tectonic uplift, shaping the landscape through the lateral transport of sediments and, to a certain 

degree, also through feedback on regional uplift patterns (Whipple and Meade, 2004). 

 

[1.3] Landscape evolution models allow integrating growing field evidence covering different 

spatial and temporal timescales (Glotzbach, 2015), thereby accommodating a broad range of 

applications with fundamental importance in the development of geosciences (Bishop, 2007). 

Landscape evolution models are key to understanding landscape evolution both over time scales 

of millions of years (van der Beek and Braun, 1998; Tucker and Slingerland, 1994; Willett et al., 

2014; Willgoose et al., 1991b) and much shorter, millennial, timescales (Coulthard et al., 2012). 

Landscape evolution models simulate the interaction between different processes and provide 

insights into how these interactions result in different landforms. Moreover, visualizing landscape 
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evolution model output in intuitive animations stimulates the development of new theories and 

hypotheses (Tucker and Hancock, 2010). Landscape evolution models have also successfully 

been used for higher education in geomorphology and geology, improving students understanding 

of geophysical processes (Luo et al., 2016). 

 

[1.4] Landscape evolution is not always smooth and gradual. Instead, sudden tectonic 

displacements along tectonic faults can create distinct landforms with sharp geometries 

(Whittaker et al., 2007). These topographic discontinuities are not necessarily smoothed out over 

time, but may persist over long time scales in transient landscapes (Mudd, 2016). For example, 

faults may spawn knickpoints along river profiles. These knickpoints will propagate upstream as 

rapids or water falls (Hoke et al., 2007), thereby maintaining their geometry through time 

(Campforts and Govers, 2015). After an uplift pulse, the river will only regain a steady state when 

the knickpoint finally arrives in the uppermost river reaches. Transiency is not limited to 

individual rivers but also affects larger systems such as the Pachmarhi of India where the 

landscape may never reach a condition of steady state due to the permanent asymmetry in vertical 

uplift, climatically driven denudation and horizontal tectonic advection  

 

[1.5] Topographic discontinuities that result from transient 'shocks' are inherently difficult to 

model accurately. Most of the widely applied Landscape evolution models (Valters, 2016), use 

first order accurate explicit or implicit finite difference methods to solve the partial differential 

equations (partial differential equation) that are used to simulate river incision. These schemes 

suffer from numerical diffusion (Campforts and Govers, 2015; Royden and Perron, 2013). 

Numerical diffusion will inevitably lead to the gradual disappearance of knickpoints: the inherent 

inaccuracy of (implicit) first order accurate methods will result in ever smoother shapes. While 

this topographic smearing has already been shown to have implications for the accuracy of 

modelled longitudinal river profiles, we hypothesize that it is also relevant for the simulation of 

hillslope processes: hillslopes respond to river incision and, thus, inaccuracies in river incision 

modelling will propagate to the hillslope domain. Whether and to what extent this occurs, is yet 

unexplored. 

 

[1.6] Tectonic displacement is similar to river knick point propagation; in both cases, sharp 

landscape forms are laterally moving. Numerical diffusion may therefore significantly alter 

landscape features when tectonic shortening or extension if simulated using first order accurate 

methods. This problem Landscape evolution model can in principle be overcome with flexible 

gridding, whereby the density of nodes on the modelling domain is dynamically adapted to the 

local rate of change in topography. However, models using flexible gridding have other 

constraints. They are much more complex to implement Landscape evolution model and hence 

less easy to adapt, require permanent mesh grid updates and impose the structure of the numerical 

grid to the natural drainage network as rivers are forced to follow the numerically composed grid 

structure. Furthermore, the output of flexible grid models is not directly compatible for most 

software that is available for topographic analysis (Schwanghart and Kuhn, 2010). 

 

[1.7] Here we present topotoolbox landscape evolution models, a spatially explicit raster 

based landscape evolution model, which is based on the object-oriented (Benjamin Campforts, 

Wolfgang Schwanghart and Gerard Govers-2016 ) function library topotoolbox 2 (Schwanghart 

and Scherler, 2014). Contrary to previously published Landscape evolution models  we solve 

river incision using a flux limiting total volume method which is total variation diminishing (total 

variation diminishing) in order to prevent numerical diffusion when solving the stream power 

law. Our numerical scheme expands on previous work (Campforts and Govers, 2015) by 

extending the mathematical formulation of the total variation diminishing method from 1D to 

entire river networks. Moreover, we developed a 2D total variation diminishing-finite volume 
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method to simulate horizontal tectonic displacement on regularly grids, thus allowing accounting 

for three dimensional variations in tectonic deformation. The objective of this paper is to evaluate 

topotoolbox landscape evolution models and assess the performance of the numerical methods to 

a variety of real-world and synthetic situations. We show that the use of this updated numerical 

method has implications for the simulation of both catchment wide erosion rates and landscape 

topography over geological time scales. 

 

[1.8] Topotoolbox landscape evolution models provide the geoscientific community with an 

easily accessible and adaptable tool. Topotoolbox landscape evolution models are therefore a 

fully open source software package, written in MATLAB and based on the TopoToolbox 

platform. Users should be able to run topotoolbox landscape evolution models using both real 

data and synthetic landscapes. Moreover, the integration of topotoolbox landscape evolution 

models in TopoToolbox allows direct digital 80 terrain analysis using the TopoToolbox library 

(Schwanghart and Scherler, 2014). In its current form topotoolbox landscape evolution models is 

limited to uplifting, fluvially eroding landscapes: further development will allow integrating other 

processes (e.g. glacial erosion) as well as the explicit routing of sediment through the landscape. 

 
2.   Theory and geomorphic transport laws 
 

2.1. Tectonic deformation 
 

In its simplest form, tectonic deformation is represented by vertical uplift; ܷሺݔ, ,ݕ  ሻ [L tଵ]. however, many tectonic configurations imply that displacements have both aݐ

vertical (uplift or subsidence) and a lateral (extension or shortening) component (Willett, 1999; 

Willett et al., 2001). The change in elevation of the earth surface ሺݖሻ over time due to tectonic 

deformation is then: 

 𝜕௭𝜕௧ = ܷ + v୶ 𝜕௭𝜕௫ + ௬ݒ 𝜕௭𝜕௫                                                       (1) 

 

where ௫ܸ and ௬ܸ [L tଵ].  are the tectonic displacement velocities in the ݔ and ݕ direction, 

respectively. 

 
2.2. River incision 

 
Detachment limited fluvial erosion is calculated based on the well-established relation 

between the channel gradient and the contributing drainage area ሺ𝐴ሻ, also referred to as the 

Stream Power Law (Howard and Kerby, 1983): 

 𝜕௭𝜕௧ = 𝐴𝐴ሻ௠ݓ௪௞ሺܭ− ቀ𝜕௭𝜕௫ቁ௡
                 (2) 

 

K [L
1-2m

 t
1
] is an erodibility parameter that depends on local climate, hydraulic roughness, 

lithology and sediment load. K can be adapted to local variations in erodibility by using a scaling 

coefficient ݓ௄ [dimensionless]. In case of uniform erodibility, 95 ݓ௄ is set to one. A is the 

drainage area, which is used as a proxy for the local discharge. Similar to K, A can be corrected 

for regional precipitation variabilities through a scaling coefficient ݓ𝐴 [dimensionless]. m and n 

represent the area and slope exponent: their values reflect hydrological conditions, channel width, 

as well as the dominant erosion mechanism. K, m and n are interdependent and it is usually 

impractical to constrain any of their values alone (Croissant and Braun, 2014; Lague, 2014). 

Thus, many studies provide estimates for the ݉/݊ ratio. For ݉/݊ ratios between 0.35 and 0.8, K 
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values span several orders of 100 magnitudes between ͳͲ−ଵ଴  − ͳͲ−ଷ mሺଵ−ଶ୫ሻ yr−ଵ (Kirby and 

Whipple, 2001; Seidl and Dietrich, 1992; Stock and Montgomery, 1999). In order to represent 

fluvial sediment transport, it has previously been proposed to add a diffusion component 

(Rosenbloom and Anderson, 1994). However, we follow others in assuming that in eroding 

settings, detachment limited erosion is controlling landscape evolution and is represented by the 

advection equation represented in Eq. (2) (Attal et al., 2008; Goren et al., 2014; Howard and 

Kerby, 1983; Whipple and Tucker, 1999). 

 
2.3. Hillslope processes 

 
River incision drives the development of erosional landscapes by changing the base level 

for hillslope processes. Steepening of hillslopes subsequently leads to increased sediment fluxes 

from hillslopes to the river system. Hillslope erosion is equal to the divergence of the flux of 

soil/regolith material ሺ𝒒𝒔,  :ሻ[ଵܶ−ଵ−ܮ ଷܮ]
 𝜕௭𝜕௧ = −∇qs                                                                                                             (3) 

 

Different geomorphological laws describe hillslope response to lowering base levels. The model 

of linear diffusion assumes that the soil/regolith flux is proportional to the hillslope gradient 

(Culling, 1963): 

 qs =  𝛻௭                                                                                           (4)ܦ− 

 

where D is the diffusivity [L
2
 t

-1
] that parameterizes hillslope erosivity and erodibility and 

determines rate of soil/regolith creep. Linear hillslope diffusion produces convex upward slopes. 

Field evidence, however, suggests that this model is only rarely 115 appropriate (Dietrich et al., 

2003). Instead, hillslopes often tend to have convex-planar profiles because rapid, ballistic 

particle transport and shallow landsliding dominate as soon as slopes approach or exceed a 

critical angle (DiBiase et al., 2010; Larsen and Montgomery, 2012). To account for this rapid 

increase of flux rates with increasing slopes, Andrews and Bucknam (1987) and Roering et al. 

(1999) proposed a nonlinear formulation of diffusive hillslope transport, assuming that flux rates 

increase to infinity if slope values approach a critical slope Sc: 

 qs = − 𝐷𝛻೥ଵ−ሺ|∇೥|/ௌ𝑐ሻమ                          (5) 

 

Main controls on variations of ܦ include substrate, lithology, soil depth, climate and biological 

activity, amongst others. Values of D vary widely and range between 10
-3

 and 10
-1

 m
2
 yr

-1
 for 

slopes under natural land use (Campforts et al., 2016; DiBiase and Whipple, 2011; Jungers et al., 

2009; Roering et al., 1999; West et al., 2013). 

 
2.4. Overall landscape evolution 
 

In summary, topotoolbox landscape evolution models solve the following partial 

differential equations: First, it simulates the horizontal tectonic displacements over the entire 

model domain: 

 𝜕௭𝜕௧ = v୶ 𝜕௭𝜕௫ + v୷ 𝜕௭𝜕௬                                                                                                       (6) 
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Second, top toolbox landscape evolution models simulate detachment limited river incision for 

the parts of the landscape that are predominantly sculpted by fluvial processes. We determine that 

domain where contributing drainage area (4) exceeds a critical drainage area ሺ𝐴௖ሻ: 
ݐ��ݖ��  = ܷ + ௫ݒ) ݔ��ݖ�� + ௬ݒ (ݕ��ݖ�� − ቆݓܭ௞ሺݓ𝐴𝐴ሻ(௠+௩௔௥ሺ௠ሻ)  ௡ቇ                                                        ሺ͹ሻ(ݔ��ݖ��)

 

 Where varሺ݉ሻ refers to the variability on m which is explained further (Eq. (20).  

Third, we define the hillslope domain where 𝐴 <  𝐴ܿ. Topographic changes in this domain are 

calculated by: 
 𝜕௭𝜕௧ = 𝜌ೝ𝜌ೞ ܷ − ∇q௦                          (8) 

 

Where 𝜌௥ and 𝜌௦ are the bulk densities of the bedrock and the regolith material, respectively [m 

L
3
]. The formulation of Eq. (8) implies that we assume that hillslopes are generally covered by 

regolith and/or soil. 

 
3.   Implement Landscape evolution modelation and numerical schemes of topotoolbox 

landscape evolution models ` 
 

Our main motivation to develop topotoolbox landscape evolution models is to provide 

users with a multi-process landscape evolution model that has a good overall computational 

performance and high numerical accuracy. Topotoolbox landscape evolution models is 

predominantly written in the MATLAB programming language; to reduce run times, however,  

topotoolbox landscape evolution models  encompasses some C-code where this significantly 

improves 140 performances. Integrating topotoolbox landscape evolution models into  

TopoToolbox enables running the model, visualizing and analyzing its output in the same 

computational environment. 

 

Figure 1 shows a schematic representation of the topotoolbox landscape evolution models 

workflow. Users can configure the tectonic setting by providing (i) a 2D or 3D array that 

represents spatially and spatio-temporally variable vertical uplift patterns, respectively, and (ii) 

two matrices to represent horizontal velocity fields ሺ𝒗࢞ and 𝒗࢟ሻ. Topotoolbox landscape 

evolution models  accepts synthetic topographies and real world digital elevation models and 145 

leaves users with full control on model parameter values. In the following sections, we will 

discuss the numerical methods involved in top toolbox landscape evolution models to solve the 

partial differential equations described in section 2. The section numbers correspond to the 

processes indicated in the workflow in Fig. 1. 

 
3.1. Drainage network development 
 

TopoToolbox provides a function library for deriving and updating the drainage network 

and terrain attributes in MATLAB 150 (Schwanghart and Scherler, 2014). The calculation of 

flow-related terrain attributes, i.e., data derived from flow directions, relies on a set of highly 

efficient algorithms that exploit the directed and acyclic graph structure of the river flow network 

(Phillips et al., 2015). Nodes of the network represent grid cells and edges represent the directed 

flow connections between the cells in downstream direction. Topological sorting of this network 

of grid cells transforms returns an ordered list of cells in that upstream cells appear before their 

downstream neighbors. Based on this list, we calculate terrain attributes such as upslope 155  
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Figure 1: River courses and χ-plots for region of low-relief, ‘relict’ landscape (Survey of India Toposheet-

55J/7) of the Denwa River drainage. 
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Areas with a linear scaling thus enabling efficient calculation ሺܱሺ݊ሻሻ at each time step of the 

simulation even for large grids (Braun and Willett, 2013).  

 

          Digital elevation models of real landscapes frequently contain data artifacts that generate 

topographic sinks. Topographic sinks can also occur as a result of diffusion on hillslopes by 

creating "colluvial wedges" damming the sections of the river network. By adopting algorithms of 

flow network derivation from TopoToolbox, top toolbox landscape evolution models  makes use 

of an efficient and accurate technique for 160 drainage enforcement based on auxiliary 

Topography to derive non-divergent (D8) flow networks (Schwanghart et al., 2013; Soille et al., 

2003). Based on the thus derived flow network, topotoolbox landscape evolution models uses 

downstream minima imposition (Soille et al., 2003) that ensures that downstream pixels in the 

network have lower or equal elevations than their upstream neighbors. 

 
3.2. Tectonic displacement 

 
We implement Landscape evolution model a 2D version of a flux limiting total volume method to 

reduce numerical diffusion when simulating tectonic displacements on a regular grid. Equation 

(1) can be written as a scalar conservation law: 

 ܼ௧ + ݂ሺݖሻ௫ + ݂ሺݖሻ௬ = Ͳ                                     (9) 

 

where fሺݖሻ  =  𝒗ݖ࢞ and ݂ሺݖሻ  =  𝒗ݖ࢟ are the flux functions of the conserved variable z. We refer 

to the supp Landscape evolution modelary material of Comforts and Govers (2015: Eq. SI 8 - 12) 

for a derivation of the differential form of Eq. (9) which can be converted to a numerical semi-

conservative flux scheme: 

௜,௝௞+ଵݖ  = ௜,௝௞ݖ + ∆௧∆௫ [݂௜−భమ,௝ − ݂௜+భమ,௝] + ∆೟∆೤ [݂௜,௝−భమ − ݂௜,௝+భమ]                                                              (10) 

 

where ݖ௜,௝௞ . is the elevation of the cell at row ݅ and column ݆ at time ݇ × .ݐ∆  ݂ represents the 

numerical approximation of the physical fluxes from Eq. (9). The in- and out coming fluxes are 

subsequently approximated with a flux limiting upwind method which is total variation 

diminishing. A total variation diminishing scheme prevents the total variation of the solution to 

increase in time and hence prevents spurious oscillations that are associated with higher order 

numerical methods. The use of a flux limiter allows the method to have a hybrid order of 

accuracy being second order accurate in most cases but shifting to first order accuracy near 

discontinuities. Hence the total variation diminishing “finite volume method method establishes a 

compromise between two desirable properties of a numerical method: it achieves a higher order 

of accuracy than first order schemes while ensuring numerical stability (Harten, 1983).  

Topotoolbox landscape evolution models use a staggered Cartesian grid for numerical 

discretization. The data grid points, or elevations from the digital elevation model ሺzሻ, are 

considered to represent the center of the computational cells, whereas the velocity fields ሺ𝐯𝐱 and v୷ ሻ are located at the cell faces. The numerical total variation diminishing fluxes are 

calculated following Toro (2009): 

 

௜݂+భమ,௝்𝑉𝐷 = ௜݂+భమ,௝௅𝑂 + 𝜑௜+భమ,௝ [ ௜݂+భమ,௝ுூ − ௜݂+భమ,௝௅𝑂 ]                                                                                      (11) 

 

where ݂ுூ and ݂௅𝑂 represent the high and low order fluxes respectively: 
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௜݂+ଵଶ,௝௅𝑂 = ܽ଴v௜+ଵଶ,௝ݖ௜,௝௞ + ܽଵv௜+ଵଶ,௝ݖ௜,௝௞  

 ௜݂+భమ,௝ுூ = 𝛽଴v௜+భమ,௝ݖ௜,௝௞ + 𝛽ଵv௜+భమ,௝ݖ௜,௝௞                                                                           (12) 

 

The low order fluxes are solved with a first order upwind Godunov scheme (1959): 

 ܽ଴ = ଵଶ (ͳ + signሺ𝐯ሻ)and ܽଵ = ଵଶ (ͳ − signሺ𝐯ሻ)                                                                         (13) 

 

The high order fluxes are solved with a Lax-Wendroff scheme (1960): 

 𝛽଴ = ଵଶ ቀͳ + v ∆௧∆௫ቁ  and 𝛽ଵ = ଵଶ ቀͳ + v ∆௧∆௫ቁ                                                                         (14) 

 

From Eq. (12), Eq. (13) and Eq. (14) it follows that: 

 ௜݂+ଵଶ,௝௅𝑂 = v௜+ଵଶ,௝ݖ௜,௝௞  

௜݂+భమ,௝ுூ = ଵଶ v௜+భమ,௝(ݖ௜,௞ + ௜+ଵ,௞ݖ ) − ቆv೔+భమ,ೕቇమ∆௧ଶ∆௫ ௜+ଵ,௞ݖ) +  ௜,௞)                                                           (15)ݖ

 𝜑௜+భమ,௝ Represents the flux limiter, which is solved with the van Leer scheme (1997): 

  𝜑௜+ଵଶ,௝ = ௜+ଵଶ,௝ݎ + ݏܾܽ (௜+ଵଶ,௝ݎ௜+ଵଶ,௝ݎ)
ͳ + ݏܾܽ (௜+ଵଶ,௝ݎ)                                                                                                             ሺͳ͸ሻ 

where ݎ is a smoothness index calculated as: 

௜+భమ,௝ݎ  = ௭೔+మ,ೕೖ −௭೔+భ,ೕೖ௭೔+భ,ೕೖ −௭೔,ೕೖ                                                                                         (17) 

 

The overall performance of the total variation diminishing-finite volume method is evaluated by 

comparing it with the first order accurate upwind Godunov scheme which is not flux limiting Eq. 

(13). In the remaining part of the text we refer to this scheme as the first order Godunov Method. 

 

3.3. River network updating 
 

 Topotoolbox landscape evolution models  features a 1D version of the flux limiting total 

variation diminishing-finite volume method to solve for river incision (Eq. (7)) which written as 

scalar conservation law is: 

௧ݖ  + ݂ሺݖሻ௫ = Ͳ                                                                                         (18) 

 

where ݂ሺݖሻ represents the flux function of the conserved variable ݖ, representing the channel 

elevation. The method is similar than the one described in section 3.2 although fluxes are only 

calculated in one direction. We refer to the Supper Landscape evolution modelary Information 

provided by Comforts and Govers (2015) for a full derivation of this scheme. In addition, we 

implement Landscape evolution model a first 195 order explicit and implicit finite difference 



10 

 

methods for the solution of the stream power law detailed in Braun and Willett (2013). Implicit 

schemes provide stable solutions regardless of the time step considered, a property desired when 

simulating landscape evolution over long timescales and large spatial domains. An explicit 

scheme (both finite difference methods and total variation diminishing-finite difference methods), 

in turn, requires time steps that satisfy the Courant Friedrich Lewy condition (courant-friedrich-

lewy): 

 ௄𝐴೘∆௧∆௫ ≤ ͳ                                                                                                                  (19) 

 

We introduce an inner time step ሺ∆ݐ௜௡௠௘௥ሻ for the simulation of river uplift and incision to 

achieve a sufficiently small time step while maintaining an acceptable runtime (Fig. 1).  Top 

toolbox landscape evolution models also allows for inner time steps satisfying the courant-

friedrich-lewy criterion if the implicit solution is used. While the implicit solution is 

unconditionally stable, an inner time allows us to investigate the impact of the length of the time 

step on model outcomes (see section 5.1.2). Even when the Courant criterion is satisfied, model 

runs at low spatial resolutions can potentially allow very large time steps. Large time steps could 

imply a sudden input of vertical uplift in the solution resulting in the generation of artificial 

shockwaves. Therefore, top toolbox landscape evolution models allows to user to set a maximum 

length of the inner time step ሺ∆ݐ௠௔௫ሻ which we set by default to 3000 yr. 

 

Regular grids introduce artifacts in the plan form geometry of river networks because 

local drainage directions are restricted to eight directions (Braun and Sambridge, 1997). 

Moreover, as the process formulations are deterministic and flow direction algorithms follow a 

predefined order, Landscape evolution models tend to produce landscapes that are too uniform 

with respect to slope morphology and river plan form patterns. To overcome this issue, we apply 

the method of Grimaldi et al. (2005) to explicitly integrate some 210 randomness in the 

calculation of the value of the drainage area exponent (m) by attributing a variance to ݉ ∶ 
 

   varሺ݉ሻ = ଵ୬ቀଵ+ೖభೖమቁ(ଵ୬ሺAሻ)మ                                                                                         (20) 

 

where ݇ଵ and ݇ are proportionality coefficients. We update at each time step a new value of ݉ for 

each grid cell randomly drawing an error value from the distribution described by Eq. 13 and 

adding it to the mean value of m. 

 

Another way to add variability in evolving landscapes is to allow the erodibility 

parameter K, to vary in space, thereby mimicking local, semi-random variations in rock strength. 

Here, variability on K is simulated by introducing a normally distributed random deviation with a 

zero mean. 

 
3.4. Hillslope processes 

 
We implement Landscape evolution model linear hillslope diffusion using an efficient 

Crank-Nicolson scheme (Pelletier, 2008). This scheme is implicit and therefore allows large time 

steps. Implicit solutions are well suited since the diffusion equation is a parabolic partial 

differential equation and 220 much less sensitive to numerical diffusion in comparison to the 

stream power law, which is a hyperbolic partial differential equation. 

 

A numeric solution of the nonlinear hillslope equation is yet more Digital elevation 

modelanding. The explicit finite difference methods are limited by the maximum length of the 
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time step at which numerical stability is maintained. Perron (2011) developed Q-imp, an implicit 

solver that allows increasing the length of the time step by several orders of magnitude. Whereas 

the per-operation computational cost of this algorithm is higher in comparison to the explicit 

solution, the overall performance of this method is better than hitherto 225 alternative solutions 

(Perron, 2011). Q-imp efficiently calculates hillslope diffusion even for high-resolution 

simulations but is restricted to hillslope below the threshold slope. Therefore, Q-imp must be 

combined with a hillslope adjustment algorithm. 

 

We assume that hillslopes instantaneously adjust to over steepening along fault scarps 

and due to river undercutting (Burbank et al., 1996). We refrain from simulating individual 

landslides although we acknowledge that single high magnitude low frequency events may be 

relevant at the time scales of our simulations (Korup, 2006). Instead, our approach implicitly 

accounts for the combined effects of a large number and variety of landslides that effectively 

adjust slopes to a threshold slope Sc. The threshold slope can be thought of "an average effective 

angle of internal friction which controls hillslope stability" (Burbank et al., 1996). We implement 

Landscape evolution model this hillslope adjustment using a modified version of the excess 

topography algorithm (Blothe et al., 2015). In this algorithm, elevations z at time step t + 1 are 

derived in a way that entails that the absolute local gradient at each grid cell is less or equal than 

Sc. This is achieved by decreasing elevations at locations i to the minimum elevation of all other 

locations j to which we add an offset calculated by the Euclidean distance ‖݅, ݆‖ and ܵ௖ 

 ܼ௜௧+ଵ = min{ ௝ܼ௧ + ܵ௖‖݅, ݆‖}                                                                                       (21) 

 

The above equation entails that ܼ௜௧+ଵ  at one location depends on all other grid cells and 

that the algorithm has a time complexity of ܱሺܰଶሻ, which would render it unsuitable for frequent 

updating during landscape evolution model simulations. To avoid an overtly high computational 

load, we implement Landscape evolution model the algorithm using morphological erosion with a 

gray-scale structuring Landscape evolution model (see MATLAB function ordfilt2), which is a 

minimum sliding window with additive offsets calculated from the window size and 240 Sc. This 

significantly reduces run times as we calculate elevations at one location from the sliding 

window. Yet, this approach not necessarily removes all gradients greater than Sc. We solve this 

by calling the algorithm repeatedly until all slope values are equal or less thanܵ௖. 

  

We assume that albeit sediment might be temporarily redeposited in the system, it will be 

easily evacuated within a relatively short time span due to the unconsolidated nature of the 

deposits (McGuire and Pelletier, 2016). This assumption is reasonable for rapidly uplifting and 

eroding mountain belts, but may not be applicable in other environments where mass wasting 

occurs (Vanmaercke et al., 2014). 

 

3.5. Boundary conditions 
 

 Topotoolbox landscape evolution models allow the use of Dirichlet or Neumann 

boundaries conditions. Alternatively, one can opt for a random disturbance at one or more 

boundaries of the modelled domain. The latter is especially of useful when simulating strong 

lateral displacements which may otherwise generate artificially straight river profiles in the 

direction of the shortening. 

 

4.   Experiments 
 

In order to Digital elevation modelonstrate possible applications of topotoolbox 

landscape evolution models we carry out two series of numerical experiments. We first illustrate 



12 

 

the impact of different hillslope process models on simulated landscape evolution, using a 30 m 

resolution digital elevation model of the Pachmarhi of India as an example. Second, we 

investigate the amount of bias and artificial symmetry introduced in the landscape through the use 

of regular grids. 

 
4.1. Hillslope processes 
 

 Top toolbox landscape evolution models allows to simulate hillslope processes assuming 

(none)-linear slope dependent diffusion with the consideration of a threshold hillslope. Figure 2 

illustrates how different hillslope process algorithms affect the evolution of hillslopes in the 

Pachmarhi of India (Fig. 2a). We assume no tectonic displacement and use standard parameter 

values for river incision and hillslope diffusion (Table 1) and a threshold slope (Sc) of 1.2 (m/m) 

when applicable (Fig. 2b).We illustrate model results after 500 ky in Fig. 2c-d using the current 

topography as the starting condition. Linear diffusion (Eq. (4)) is not capable to keep up with 

river incision, which results in strongly over steepened hill slopes near the river channels (Fig. 1c 

and 1g). While higher values for the diffusion coefficient D will eliminate this problem 

Landscape evolution model (e.g. Braun and Sambridge, 1997) they are incompatible with 

experimental findings (Roering et al., 1999) and will restrict hillslope to convex upward shapes. 

The use of non-linear diffusion in combination with a threshold slope results in hillslope similar 

to those simulated with linear diffusion in combination with a threshold slope. However, for a 

similar value of D, hilltops become more smoothed assuming non-linear diffusion as sediment 

fluxes due to diffusive processes now reach higher values when hillslope approach the threshold 

slope. 

 

4.2. Artificial symmetry 
 

Regular gridded Landscape evolution models may introduce artificial symmetry in 

evolving landscapes (Braun and Sambridge, 1997). We perform simulations with an entirely flat 

initial surface as well as with a random initial surface with uniformly distributed elevations 

between 0 and 50 m to investigate how random perturbations of the values of m or K affect 

drainage network evolution we consider four different scenarios for each initial surface (Fig. 3). 

Scenario 1 is the reference simulation, with a low spatial resolution of 1000 m, a large time step 

of 5 ×10
4
 years and a K value of ͸ × ͳͲ6 m−଴.ଵyr−ଵ. in scenario 2, the mean erodibility K is 

halved. In scenario 3 the time step is set to 1 ×10
4
 years while in scenario 4, the spatial resolution 

is set to 200 m. 

 

At low spatial and temporal resolutions, the use of uniform parameter values results in 

clear artificial symmetry (Fig. 3). Introduction of random variability on m mainly decreases 

similarity close to the river heads where the drainage areas are the smallest (scenario 1). This is a 

consequence of the formulation of Eq. (20): the introduced variability is relatively larger for small 

catchments. Variability in K slightly decreases overall artificial symmetry at low spatial 

resolutions (senario1). The use of a lower (mean) K value, representing slower river incision also 

decreases overall artificial symmetry (scenario 2). Decreasing the time step (scenario 3) results in 

slightly different drainage networks in comparison to simulations with larger time steps but fails 

to reduce the symmetry in the result. At a high spatial resolution (scenario 4), artificial symmetry 

is still present when constant parameter values are used. However, inserting variability on the m 

and K parameters is much more effective in reducing symmetry at this resolution. 
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Figure 2. Hillslope response to river incision. (a) Standard srtm digital elevation model (30 m) included in 

TopoToolbox representing the Pachmarhi region. The dotted grey line indicates the location of the transect 

shown in subplot g. (b) Resulting topography after k years using four different descriptions for hillslope 

evolution. (c) Linear diffusion over all slope values (lin). Threshold landscape where no slopes exceed the 

threshold slope (Sc). (e) Linear diffusion 695 combined with immediate adjustment to a threshold slope 

(Sc). (f) Non-linear diffusion combined with immediate adjustment to a threshold slope (Sc). (g) Elevation 

profiles of the different model runs compared with the initial profile. Model parameter values are listed in 

Table1. 
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Table 1. Model parameters used for the topotoolbox landscape evolution models simulations. 

 

Parameter Units Figure 2 Figure 3 Figure 4 Figure 5 Figure 7-9 

       

Initialization  
Initial Surface   Pachmarhi flat - random flat, 1D random synthetically 

produce 

digital 

elevation 

models 
shown in 

Fig.3 

Uplift Pattern   uniform       variable in 

time 

uniform uniform 

Uplift Rate m yr
-1

 0 1 ×10
-3

          0 - 1 × 10
-3

 1 × 10
-3

 0 - 3 × 10
-3

 

Spatial Step m 30 200 - 1000       100 100 100 - 500 

      Computational parameters   

Time Span yr 5 ×10
5
 50 × 10

6
           1 × 10

6
 150 ×10

6
 5 × 10

6
 

Time Step yr 1250 1 × 10
4
 - 5 × 

10
4 

 

ca. 5 × 10
3
 

 

1 × 10
5
 5 × 10

4
 

Area Thresh  m
2
 2 × 10

5
      2 × 10

6
           - 2 × 10

5
 2 × 10

5
 

DrainDir  variable variable         - variable  

DiffToRiv  FALSE FALSE        - FALSE  

steadyState  FALSE TRUE         - TRUE  

SS_Value m  5 - 0.5  

parallel  FALSE FALSE        - FALSE  

massWasting_river FALSE FALSE        - FALSE  

                                                                         Boundary conditions     

BC_Type   Neumann Dirichlet_Matr

ix_Ini 

  - Dirichlet - 

BC_dir_DistSites - - - - - 

BC_dir_Dist_Value 1 1 - 1 - 

BC_dir_value  0 0 - 0 - 

BC_nbGhost  1           1 - 1 - 

FlowBC  -          - - - - 

                     River incision   

Kw  ܮଵ−ଶ௠ ݐ−ଵ
 

4 ×  10
-6

 6 ×  10
-6

 - 3 ×  

10
-6=6 

5 ×  10
-6 

 

5 ×  10
-6

 5 ×  10
-6

 

m  0.45 0.45      0.42 0.45  0.45 

n   1 1      1 1 1 

m_var  0 0 - 0.2 - 0 - 

   0  -  

       

       

       

       

K_weight  - - - - - - 

       

     normally 

distributed 
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Norm Precip  - - - - - - 

   

               Hillslope response 

 
       

D mଶyr−ଵ 0.015 0.036 - 0.036 0.03

6 𝜌ݎ 𝜌ݏ−ଵ - 1.3 1.3             1.3 1.3 1.3 

DiffTol  1 × 10
-4

 1 × 10
-4

 - 5 × 10
-4

 1 × 10
-

4
 

Sc m m
-1

 1.2 0.7 - 0.7 1 

Sc_unit   tangent tangent - tangent   

                         Tectonic shortening   

     
shortening   FALSE FALSE - FALSE   

short_x m yr
-1

      

short_y m yr
-1

         

             Numerics   

     riverInc   implicit 

finite 

difference 

methods 

implicit finite 

difference 

methods 

implicit finite 

difference 

methods     

total variation 

diminishing 

finite volume 

method 

 implicit finite 

difference 

methods 

implicit 

finite 

difference 

methods 

total 

variation 

diminishing 

finite 

volume 

method 

Courant-

Friedrich-

Lewys 

 0.7  0.7           0.7 0.7 0.7 

diffScheme  imp_lin 

only_sc 

imp_lin_s

c 

imp_nonli

n_sc 

        

imp_lin_sc 

- imp_lin_sc  

shortening_meth Upwind_t

otal 

variation 

diminishin

g 

Upwind_total 

variation 

diminishing 

- Upwind_total 

variation 

diminishing 

 

          Model output     

ploteach   1 1 - 1 0 

saveeach  1 1-  1 0 

fileprefix  res_ ArtSym_RandI

ni_1_Si          -
mNb_1_         

-
 

 standard_run

_1 00m 

- 

resultsdir  C:\DATA

_... 

C:\DATA_..

. 

- C:\DATA_

... 
- 

       

Drainage networks simulated using an initial surface with elevations that randomly vary 

between 0 and 50 m are almost free of artificial symmetry and the final geometry of the drainage 
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network is now less dependent of parameter variability. The latter underscores the importance of 

initial digital elevation model conditions for the final results of a simulation (Perron and 

Fagherazzi, 2011). Nonetheless, even with a randomly varying initial surface, the perturbation on 

parameter values clearly affects the drainage network that is produced. Parameter value 

perturbation generally results in drainage networks which are less rectilinear than those simulated 

without perturbation. 

 

 
 
Figure 3. Steady state river networks obtained with different model configurations. The age at which 700 a 

steady state is achieved is given in the title of the subplot. The first three columns in the left hand side of 

the figure represent model runs initiated from a flat, zero elevation surfaces. The first three columns in the 

right hand side of the figure represent model runs initiated from a surface with elevations randomly varying 

between 0 and 50 m. The configuration of the different model simulations is explained in the text and 

parameter values are listed in Table 1.  

 

5.   Impact of numerical methods 
 

In a next step we investigate to what extent the numerical schemes implement Landscape 

evolution modeled in topotoolbox landscape evolution models affect simulated landscape 

evolution. We distinguish between the effects on simulated river incision on the one hand and on 

simulated tectonic displacement on the other. We use a synthetically generated landscape for all 

simulations as a starting condition because we are interested in the evaluation of the functionality 

of the model and not on the correct simulation of the evolution of a particular landscape or region. 

Hence, our simulations are uncelebrated and results were not compared with a 'true' landscape: 

however, the chosen parameter values are realistic. 
 

5.1. River incision 
 

5.1.1.   1D River incision 
 

The impact of numerical diffusion on propagating river profile knickpoints is most 

obvious in situations where an analytical solution is available. The first simulation illustrates such 
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a situation, with an artificial river profile characterized by a major knickzone between 8 and 12 

km from the river head (Fig. 4). We assume that the drainage area is increasing in proportion to 

the square of the distance and uplift equals zero. For this simple configuration, an analytical 

solution for the SPL can be found using the method of characteristics (Luke, 1972). 

Notwithstanding the relatively high spatial resolution of 100 m, both implicit and explicit Finite 

Difference Methods (finite difference methods) suffer from clear numerical diffusion when river 

incision is calculated over a time span of 1 Myr (Fig. 4). The total variation diminishing-finite 

volume method achieves a much higher accuracy, a finding that is systematic, occurring over a 

wide range of spatial resolutions and parameter values (Campforts and Govers, 2015). 

 

 
 

Figure 4. Solution of the linear 1D stream power law for a synthetic knick zone over a time span 710 of 1 

Myr. The analytical solution is obtained with the method of characteristics. The spatial resolution equals 

100 m. Other model parameter values are listed in Table 1. 

 

5. 1. 2.   River incision and catchment wide erosion rates 
 

We hypothesize that apart from river profile evolution, the accurate simulation of river 

knickpoints will influence landscape evolution as a whole. In order to investigate the sensitivity 

of catchment wide erosion rates to different numerical schemes of the river incision model, we 

first create a steady-state artificial landscape that we initialize with uniformly distributed random 

elevation values between 0 and 50 m on a 50 km x 100 km grid with a spatial resolution of 100 m 

. Landscape evolution is simulated using Dirichlet boundary conditions and by inserting spatially 

and temporally uniform vertical uplift of 1 km Myr
-1

 over a period of 150 Myr. Outer model time 

steps are set to 5 × 10
4
 yr. Parameter values for river incision and hillslope response are constant 

in space and time and are reported in Table 1. Figure 5 shows the resulting steady state landscape. 

 
We impose four consecutive uplift pulses of equal magnitude to this artificial landscape 

(Fig. 5). Uplift pulses have a wavelength of 1.25 Myr and amplitude of ͳ.ͷ × 10
-3

 m yr
-1

 (Fig. 6).  

Top toolbox landscape evolution models is run over 5 Myr with main model time steps of 5 ×  

10
4
 yr, again with Dirichlet boundary conditions and plan form fixed drainage network. We use 

two spatial resolutions (100 m and 500 m) and three different numerical methods (implicit finite 

difference methods without time step limitation, implicit finite difference methods with time step 

limitation (courant-friedrich-lewy condition applied) and total variation diminishing-finite 

volume method) to simulate river incision. When applicable, the length of the inner time step is 

set to 3 × 10
3
 yr. Without inner time steps, river incision is calculated once for each main (outer) 

model time step (5 × 10
4
 yr). 
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Figure 5. A synthetic steady state landscape produced as the testing environment to verify and compare 715 

the different numerical schemes implement Landscape evolution modulated in topotoolbox landscape 

evolution models. Model runtime was 150 Myr, uplift rate was assumed to be spatially uniform over the 

area (block uplift) and fixed to 10-3 m yr-1. Other model parameter values are listed in Table 1.  

 

 
 
Figure 6. Uplift imposed to the steady state landscape show in Figure 5 to investigate the impact of 

different numerical schemes. 

 

We compare differences in simulated erosion rates by randomly selecting a number of 

catchments with drainage areas ranging 325 between 1 and 50 km
2
 (221 and 202 catchments for 

runs at a spatial resolution of 100 m and 500 m respectively) (Fig.8). We calculate the erosion 

rates for each time step by subtracting the elevation grid in the previous time step from the 

updated, current, elevation grid. The difference between the results obtained with different 

numerical schemes is quantified by calculating a Root Mean Square Error: 

ݎ݋ݎݎܧ ݁ݎܽݑݍܵ ݊ܽ݁ܯ ݐ݋݋ܴ  = √∑ (𝜀೔𝑇𝑉𝐷−𝜀೔,𝐹𝐷𝑀)మ೙೔=భ ௡ௗ                                     (22) 
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where 𝜀௜்𝑉𝐷 and 𝜀௜,𝐹𝐷ெ refer to the catchment wide erosion rates simulated with the total 

variation diminishing-finite volume method and finite difference methods respectively to simulate 

river incision and ݊௕ is the total number of discrete time steps of the simulated erosion record. 

 

We rank the catchments from low to high Root Mean Square Error for each comparison 

to investigate overall variations in catchment wide erosion rates. Figure 7 shows the results for 

the catchments at 10%, 50% (median) and 90% percentile. Note that the ranking is performed 

separately for the models runs at 100 m and 500 m as different sub catchments are randomly 

generated for both 335 simulation runs. The percentiles shown in Fig. 7 therefore represent 

different catchments. 

 

 
 
Figure 7. Temporal variation in simulated catchment wide erosion rates using different numerical methods 

to simulate river incision. The black lines represent simulations where a flux limiting total variation 

diminishing-finite volume method is used, the blue lines represent the implicit finite difference methods 

without constraints on the time steps and the red lines represent the finite difference methods with an inner 

time step calculated with the courant-friedrich-lewy criterion. (a) Simulations performed at a spatial 

resolution of 100 m. (b) Simulations performed at a spatial resolution of 500 m. Here, a median filter with a 

window of 3 time steps was applied on the simulated erosion rates to eliminate spikes which might occur at 

low resolutions. 

 

For most catchments, we observe significant differences in erosion response between the 

three numerical methods at a spatial resolution of 100 m. The amplitude of the response to a 

tectonic uplift pulse increases when reducing numerical diffusion: the use of a first order implicit 

finite difference method without time step restriction results in a much smoother response in 

comparison to the total variation diminishing-finite volume method. The variations in response 

amplitude are significant: the majority of the catchments record amplitude reductions by 340 
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more 50% when model with the implicit finite difference methods without time step restriction. 

Time step restriction (and thereby sacrificing the main advantage of the implicit finite difference 

methods) significantly reduces numerical diffusion so that most catchments display an erosional 

response comparable to that simulated by the total variation diminishing-finite volume method. 

However, this finding is supported only by the simulation with 100 m spatial resolution. The 

advantage of a time step restricted implicit finite difference methods over a non-restricted implicit 

finite difference methods disappears almost completely for a coarser grid resolution of 500 m. 

 

Catchment-wide erosion rates vary systematically with the use of different numerical 

methods. Figure 8 shows that erosion rates diverge between the different methods with increasing 

distance to the outlet of the main river while they are similar for larger catchments. A smaller 

effect of the numerical scheme on large catchment areas may be partly due to stronger averaging 

of local variations in catchments. In addition, catchments at a large distance from the outlet—and 

thus likely with smaller catchment areas—tend to experience the uplift signal only after several 

model time steps. If catchments are far from the fault zone, knick points will then be significantly 

smoothed if an implicit finite difference methods is used, which will affect the response of the 

catchment. This smoothening is not apparent if the catchment is close to the border of the 

modelling domain. Again, spatial resolution matters: a larger grid size not only results in larger 

differences on average but also in larger differences between small and large catchments (Fig. 8). 

 

 
 
Figure 8. Spatial variation of differences between simulated erosion rates calculated with a flux limiting 

total variation diminishing-finite volume method for simulating river incision and an implicit finite 

difference method. Here, we compare methods both run with an inner timestep constrained with the 

courant-friedrich-lewy criterion (see text). Root Mean Square Error is thus calculated between the black 

and red lines from Figure 7. Left column represents simulations run at a spatial resolution of 100 m, right 

column at 500 m. (a and b) Location of the randomly selected catchments with an area > 1 km² and < 50 

km². Colors refer to the Root Mean Square Error between the two simulations. (c and d) Differences 

between the schemes increase with increasing distance from the river outlets and are inversely correlated 

with the catchment area. 

 

The differences in catchment response relate to the differences in simulated erosion rates 

within the catchments. Figure 9 illustrates the spatial difference in erosion rates calculated with 
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the two numerical methods during the final step of the model run (after 5 Myr). This figure shows 

that spatial differences are significant and form a systematic banded pattern related to the upslope 

migration of the erosion waves of the individual uplift pulses. 

 

 
 

 

Figure 9. Spatial pattern of erosion rates during one model time step when simulating landscape evolution 

with the flux limiting total variation diminishing-finite volume method versus the first order implicit finite 

difference methods. (a) simulation at a resolution of 100 m where 740 the time step of the implicit method 

is not constrained (b) simulation at a resolution of 100 m where the time step of the implicit method is 

constrained with the courant-friedrich-lewy criterion (c) simulation at a resolution of 500 m where the time 

step of the implicit method is not constrained (d) simulation at a resolution of 500 m where the time step of 

the implicit method is constrained with the courant-friedrich-lewy criterion. 

 
5.2. Tectonic displacement 

 
We test the performance of the 2D version of the flux limiting total variation 

diminishing-finite volume method to simulate tectonic displacement using a simplified model 

setup. We use a synthetic landscape as an initial condition and impose a constant lateral tectonic 

displacement while keeping erosion rates zero. Theoretically, this should result in a laterally 

displaced landscape that, apart from this, remains unchanged in comparison to the initial state. 

We compare the flux limiting total variation diminishing-finite volume method with a first order 

accurate upwind Godunov Method Figure 10 illustrates the results when applying a tectonic 

displacement in two directions ሺݒ௫ = ௬ݒ =  ͳͲ mm yr
-1

) over a time span of 1 Myr. The results 

show that the explicit Godunov method strongly smoothes the resulting digital elevation model 

whereas the 2D total variation diminishing-finite volume method scheme produces a digital 

elevation model that is very similar to the initial digital elevation model, with minimal amounts of 

numerical diffusion. 
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Figure 10. Impact of numerical schemes when simulating horizontal shortening on a fixed grid. Left: 

extract from synthetically produced digital elevation model from Fig. 5. Middle: horizontal shortening in 

two directions simulated with a 2D explicit first order Godunov Method . Right: horizontal shortening in 

two directions simulated with a 2D explicit flux limiting total variation diminishing-finite volume method. 

 

In order to quantify and better understand the amount of numerical diffusion (DN [L
2
 yr

-

1
]) introduced by the Godunov method and the total variation diminishing-finite volume method 

method, we test a range of different model configurations and calculate the numerical diffusivity, 

DN, corresponding to the observed smoothing. The latter is done by calculating the diffusivity 

required to transform the initial digital elevation model ܯܧܦ௜௡௜ to the 370 final digital elevation 

models produced at the end of the simulations ሺܯܧܦ௙௨௡௧ሻ. the optimum amount of diffusion is 

determined by minimizing the misfit function H with a sequential quadratic programming method 

(Nocedal and Wright, 1999). H is given by: 

 𝐻 = 𝑖௡𝑖ܯܧܦ)√ − ̅̅(௙𝑖௡௧ܯܧܦ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ଶ
                                                                           (23) 

 

Figure 11.a illustrates the relation between ܦ௡ and the spatial resolution of different numerical 

approximations. The 2D total variation diminishing-finite volume method decreases numerical 

diffusion by a factor of 5-60 compared to the Godunov method (Fig. 11b). The accuracy increases 

for both schemes with increasing resolution and increasing courant-friedrich-lewy numbers. The 
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increase in accuracy with higher spatial resolution is due to smaller spatial steps that result in 

better approximations of the spatial derivatives. Yet, the gain in accuracy with increasing spatial 

resolution is higher for the total variation diminishing-finite volume method than for the Godunov 

method . Our analysis shows that the explicit finite difference methods  

 

 
 
Figure 11. (a) Amount of numerical diffusion (DN) introduced in the system when simulating lateral 

tectonic displacement in two directions as a function of raster resolution. The grey zone indicates the range 

of naturally observed diffusion rates. (b) The ratio between the amounts of numerical diffusion for the first 

order Godunov Method  versus the flux limiting total variation diminishing finite volume method. 

 

Performs best with a courant-friedrich-lewy criterion close to one. This may seem 

counterintuitive as one might expect smaller time steps (courant-friedrich-lewy = 0.5) to lead to 

higher accuracies. However, the accuracy gain from an increase in temporal resolution is reduced 

by additional numerical diffusion that is introduced by more iterations within a given time 

interval (Gulliver, 2007). 

 

6.   Discussion 
 

There is a growing consensus that most eroding landscapes are in a transient state (Mudd, 

2016; Vanacker et al., 2015). Landscape evolution models with high numerical accuracy are thus 

needed to capture transiency correctly, yet most commonly applied first order accurate numerical 

methods introduce numerical diffusion and smear discontinuities that are inherent in transient 

landscapes. Knick points in river systems are of particular concern to geomorphologists as their 

analysis reveals insights into the tectonic and climatic controls on evolving landscapes. However, 

no analytical solution exists that allows simulating river incision for changing drainage areas (Fox 

et al., 2014). Because drainage networks and drainage divides evolve in dynamic ways (Willett et 

al., 2014), the analysis of transient landscapes must thus rely on numerical methods, although 

analytical models can be applied in specific cases (Perron and Royden, 2013). We present a 

higher order flux limiting scheme (referred to as total variation diminishing-finite volume 

method) that overcomes this problem Landscape evolution model of numerical diffusion. 

 

Our simulations show that optimizing numerical schemes of Landscape evolution models 

is far from being only a numerical exercise. The impact of the numerical scheme to simulate 

detachment limited river incision on model outcomes is substantial and not limited to river profile 

development alone. Hillslopes adjust to local base level changes dictated by river incision. 

Hillslope denudation rates 395 must thus —at least partly— reflect the geometry of a knickpoint, 

whether it is a diffuse signal or a sharp discontinuity migrating upstream. Our simulations show 

that depending on the spatial and temporal resolution, catchment wide erosion rates are more 
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responsive to uplift when derived from the total variation diminishing-finite volume method in 

comparison to finite difference methods. First order (explicit and implicit) 

 

Finite difference methods fail to properly reproduce transient incision waves (Campforts 

and Govers, 2015; Pelletier, 2008) with the effect that the smoothing propagates to inferred rates 

of hillslope denudation and that catchment wide erosion rates are smeared over geological time. 

Thus, the use of a shock preserving method such as total variation diminishing-finite volume 

method is strongly recommended for accurate simulations of transient landscapes. 

 

It could be argued that TOTAL variation diminishing-finite volume methods are 

unnecessary as long as one applies an implicit method in combination with a sufficiently small 

time step. Although small time steps partly resolve the problem Landscape evolution model of 

smearing, their effect on numerical accuracy can hardly be generalized. Our simulations show 

that, for the selected parameter value combinations, results were only acceptable if a time step 

restriction is combined with a relatively high spatial resolution (100 m). In addition, it is well 

possible that, for other parameter value sets, numerical diffusion will be important, even if a fine 

grid is used. It would be infeasible for a model user to detect smearing problem Landscape 

evolution models in standard applications as comparable exact, analytically derived solutions, 

usually are nonexistent. Hence, we argue that the use of a shock capturing total variation 

diminishing-finite volume method numerical scheme is preferable since it avoids significant 

numerical diffusion under a wide range of parameter values and spatial resolutions. Moreover, by 

constraining the time step of a first order implicit method below the courant-friedrich-lewy 

criterion, the main advantage of an implicit scheme, i.e., the stability for any time step, 

disappears. 

 

One might debate the significance and necessity of numerical schemes that avoid 

diffusion of retreating knick points. We think that it is critical to simulate knick point retreat 

using a method that avoids numerical diffusion. Even in bedrock-dominated landscapes knick 

zones are often smoothed, possibly due to flow acceleration above knick zone lips and subsequent 

localized higher erosion (Berlin and Anderson, 2007). The discrepancy between actual and 

simulated longitudinal profiles of hanging valleys has prompted (Valla et al., 2010) to prefer a 

transport-limited model (Willgoose et al., 1991a) over a detachment-limited model (Howard, 

1994; Whipple and Tucker, 1999). The presence of significant sediment loads does not 

necessarily imply that transport limitations control river incision. Sediment flux dependent 

models, as first proposed by Sklar and Dietrich (1998) consider the hybrid role of sediment 

particles, acting as a tool to break and erode river beds in eroding regimes and as a covering 

armor in depositional regions (Gasparini and Brandon, 2011; Sklar et al., 1998). One-dimensional 

analytical simulations have shown that this process might generate over-steepened river reaches 

and explain the presence of permanent hanging fluvial valleys (Crosby et al., 2007). Numerical 

Landscape evolution models accounting for saltation-abrasion have so far not been able to 

reproduce such permanent hanging valleys: however this may be caused by the effects of 

numerical diffusion rather than by an inadequate process formulation (Crosby et al., 2007). 

Simulation of sharp knickpoints is also required in geomorphological and litho logical settings 

where knickpoint retreat is caused by rock toppling, possibly triggered during extreme flood 

events, where knickpoint diffusion through abrasion and plucking of small blocks is minor 

(Baynes et al., 2015; Lamb et al., 2014; Mackey et al., 2014). Thus, various scenarios of 

knickpoint retreat exist, some which are characterized by significant natural diffusion, while 

others are not. In both cases simulation tools with a minimum of numerical diffusion are required 

to correctly quantify the importance natural diffusion. 
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First order numerical methods also inadequately simulate tectonic displacement on a 

regular grid. The amount of numerical diffusion that is introduced by these methods will, in many 

cases, far exceed natural diffusion rates, thus rendering accurate simulation of hillslope 

development impossible. A 2D variant of the total variation diminishing-finite volume method, 

instead, strongly reduces the amount of numerical diffusion to values well below natural 

diffusivity values, an effect that is especially apparent at high spatial resolutions. We thus 

implement Landscape evolution modeled a scheme that allows to accurately model a process that 

significantly impacts the evolution of topography and river networks (Willet, 1999), but whose 

simulation was hitherto mainly restricted to Landscape evolution models  with flexible spatial 

discretization schemes. 

 

Although most Landscape evolution models use first order accurate discretization 

schemes (Valters, 2016), the problem Landscape evolution model of numerical diffusion has been 

widely discussed in the broader geophysical community (Durran, 2010; Gerya, 2010). An 

alternative family of shock capturing Eulerian methods being frequently applied is the MPDATA 

advection schemes (Jaruga et al., 2015). These schemes are based on a two-step approach in 

which the solution is first approximated with a first order upwind numerical scheme and then 

corrected by adding an ant diffusion term (Pelletier, 2008). However, contrary to the total 

variation diminishing-finite volume method, the standard MPDATA scheme (Smolarkiewicz, 

1983) is not monotonicity preserving (or is not total variation diminishing). Instead, MPDATA 

introduces dispersive oscillations in the solution if combined with a source term (such as uplift) in 

the equation (Durran, 2010). Adding limiters to the solution of the ant diffusive step 

(Smolarkiewicz and Grabowski, 1990) renders the MPDATA scheme oscillation free (Jaruga et 

al., 2015). However, by adding this additional correction, the method approaches the numerical 

nature of the total variation diminishing-finite volume method which does not require further 

adjustments in any case. Lagrangian schemes offer another alternative and are based on so called 

markers which evolve with the changing variable over time (Gerya, 2010). In the framework of a 

raster-based landscape evolution model, a fully Lagrangian tracing scheme is not desired and can 

be replaced by semi-Lagrangian methods that require interpolation between the propagating 

markers and the grid cells (Spiegel man and Katz, 2006). These methods could potentially 

achieve high accuracy. However, simulation of horizontal topographic shortening would require 

large amounts of incremental markers to prevent numerical diffusion when interpolating the 

solution to the grid used in topotoolbox landscape evolution models. Both memory requirements 

and interpolation processing times therefore legitimize the use of the total variation diminishing-

finite volume method which is sufficiently accurate and avoids interpolation. 

 

Some of the weaknesses of the tested numerical solutions can be reduced by Landscape 

evolution models that rely on irregular grid geometries. A Topotoolbox landscape evolution 

model avoids these techniques but rather attempts to run on rectangular grids with a maximum of 

accuracy. We chose so for several reasons: First, input data such as topography, climate, lithology 

or tectonic displacement fields are typically available as raster datasets and thus require only 

minor modifications whereas irregular grids require substantial preprocessing. Second, 

topotoolbox landscape evolution models output can instantly be analyzed and visualized using the 

Topo Toolbox library (Schwanghart and Kuhn, 2010; Schwanghart and Scherler, 2014) or any 

other geographic information system. Thus, while irregular grid geometries and flexible grids 

may have some advantages over rectangular grids with respect to numerical accuracy, 

topotoolbox landscape evolution models’s implement Landscape evolution modulation of highly 

accurate algorithms strongly reduces the shortcomings of rectangular grids while facilitating 

straightforward processing of in- and output therefore enhancing the ease of modelling. 
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 A Topotoolbox landscape evolution model offers users the flexibility to address a 

number of issues. It allows users to define different initial conditions such as a flat surface, a 

randomly disturbed surface or a digital elevation model of a real landscape. Topotoolbox 

landscape evolution models  particularly benefits from the adoption of highly efficient drainage 

network algorithms that outscore GIS implement Landscape evolution modulations in terms of 

computational efficiency while maintaining their ability to handle the artefacts (artificial 

topographic sinks) pertinent in real world digital elevation models (see Table 1 in Schwanghart 

and Scherler (2014)).  Topotoolbox landscape evolution models provide access to different 

models of hillslope denudation, and allows to model tectonic displacement at any desirable level 

of detail. Finally, a topotoolbox landscape evolution model provides different numerical schemes 

to solve the governing equations allowing users to trade-off between computational efficiency 

and accuracy. To our knowledge, such landscape evolution model versatility is hitherto inexistent 

and thus adds to the plethora of available Landscape evolution models (Valters, 2016). Its ability 

to be directly run on available digital elevation models renders topotoolbox landscape evolution 

models a simulation environment to explore trajectories of landscape evolution under different 

scenarios of geomorphologic, climatological and tectonic controls. 

 
7.   Conclusion 
 

 Topotoolbox landscape evolution models v1.0 is a raster based Landscape Evolution 

Model contained within TopoToolbox. It allows using a flux limiting Total Variation 

Diminishing Finite Volume Method  to solve the stream power law and to simulate lateral 

displacements. The total variation diminishing-finite volume method solves river incision much 

more accurate which is reflected in catchment wide erosion rates. Depending on the spatial and 

temporal resolution used during model runs, first order implicit methods to simulate river incision 

lead to catchment wide erosion rates which are smeared out over the simulated time span and do 

not allow to properly capture transient landscapes response. The fact that the impact of numerical 

schemes is not only altering simulated topography but topotoolbox landscape evolution models 

1.0 is embedded within TopoToolbox version 2.2. Topotoolbox landscape evolution models is 

platform independent and requires MATLAB 2014b or higher and the Image Processing Toolbox. 

Documentation and user manuals for the most current release version of TopoToolbox and 

topotoolbox landscape evolution models can be found at the GIT repository in the help folders of 

the software. The user manual of topotoolbox landscape evolution models includes three tutorials 

which can be accessed from the command window in MATLAB. To get started: download and 

extract the main TopoToolbox folder from the repository to a location of your choice.  
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