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ABSTRACT-The distributions of intensity and orientation of maximum 

shearing stress in typical stress systems at Pachmarhi are plotted on 

stereographic projections, in order to show the three-dimensional 

relationships. Mathematical expressions of these relationships as well as 

graphical methods of evaluation are given. Relationships of shearing 

stress to orientation of fault planes and orientation of net slip of fault 

are described in reference of Pachmarhi. Methods of  studying the 

relationships of faults and shearing stress are also described. 

___________________________________________________________________________________ 
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The solid geometry of shearing stress carries important implications pertaining to faulting and 

structural deformation, yet it has received only slight attention by geologists. Schmidt (1938), 

Sander (1940), Anderson (1948), and others have utilized the principle in interpretations. 

Schmidt's paper is an excellent treatment of the geometry of shearing stress and. has served as 

corroboration ii of part of the present Study. The problem of stress analysis in three 

dimensions has been a source of many discrepancies and incomplete understanding. The 

stereographic projection is used here in an attempt to illustrate the three-dimensional aspect of 

the problem related to the Pachmarhi. 
 

Shearing-stress intensity 
  

The total stress on any plane in a stress system can be broken into two components, 

one normal to the plane and. the other parallel to the plane. These components are known as 

"normal stress and shearing stress," respectively. 
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 The intensity of maximum shearing stress to which any plane in a homogeneous 

elastic body under stress is subjected to, can be expressed by the formula 

 

 
  𝑆 = cos + cos + cos − cos + cos + cos 2, 

 

Where 𝑠 = shearing stress; ,  and  are the three the three principal stresses 

always at right angles with +ve values representing compression and —values repretieriting 

tension: and a, b, and c are the angles from ,  and   axes, respectively, to the plane's 

normal. The derivation of this formula can be found in publications by Nadai (1931), Bucher 

(1921), and others. In order to picture the variation of intensity of shearing stress with various 

orientations of planes in a stress system, the stereographic projection has been employed. 
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(Wong, Teng-fong, Robina H.C. Wong, K.T. Chau, and C.A. Tang 2006), By this projection 

method, which represents a hemisphere plotted on a circle (Ford. 1932; Fisher, 1941; Bucher, 

1944), the planes can be plotted as points in a circle; the points represent the intersection of 

the planes' normals with the hemisphere's surface or, stated other wav, the points of tangency 

of the planes and sphere. In all the stereographic diagrams, the lower hemisphere of the unit 

sphere is pictured. The intensity of shearing stress on a particular plane is plotted at the point 

representing the plane. (Palchik, V. 2006), the variation intensities can then be contoured to 

show a complete diagram of the variation of shearing stress intensity (fig. I). 

 

 If the intensity on numerous places in a stress system is to be determined, the 

following graphic solution, using Mohr's stress plane is more rapid than solution by the 

formula. In figure 2, a, is shown a relationship, which has been recognized by Mohr and used 

as part of the demonstration of his theory of rupture. Briefly, the diagram expresses the fact 

that in a stress system, as normal stress varies, shearing stress also varies and that a graph 

showing the relationship of these two variables is always an arc of a circle. Thus, when 

shearing stress is plotted on the ordinate, normal stress on the abscissa, arcs of circles result 

(Nadai, 1931, pp43-44). The three principal stresses, ,  and , are plotted on the 

abscissa, as they also represent normal stress for three planes at right angles to the three 

principal stresses and, furthermore, there would be no component of shearing stress on these 

three planes. As shown in figure 2, a, each of the principal stresses is joined to the other two 

by semicircles which represent the three 90° arcs between the principal stress axes. Thus the 

largest circle (dotted) represents the arc between n1 and n2; and shows that, as normal stress 

varies from the value of , to the value of ; shearing stress changes from zero to a 

maximum and hack to zero. The variation of shearing and normal stress is similar on the other 

two arcs n1 - n2 and n2 - n3. It will be noted that in Mohr's stress plane, any circular arc equals 

twice the angle of the corresponding arc of the stress system. Co-ordinates may be 

constructed in Mohr's circle by drawing circles concentric to the two smaller ones. They 

correspond in position to the co-ordinates shown in the octant of the stress system (Fig. a, b ) 

; dotted, dashed, and solid arcs correspond in figure 2, a , and b .With Mohr's stress plane and 

circles constructed, values of normal and shearing stress can be react off the abscissa and 

ordinate awes for anti-plane in the stress system. 

 

 Several features of the resulting patterns formed by the contours of shearing stress 

intensity are worthy of special note. Diagrams in figure 1, a-e, show that, maximum shearing 

stress is always present on planes 45° from n1 and n3. On Mohr's stress plane, this is 

represented by the highest point on the largest semicircle. In figure I, a, the intermediate 

stress n2 equals the least stress n3, and thus all planes 45° from n3, are subjected to maximum 

shearing stress. All these planes might be thought of as being tangent to a cone around the n1 

axis. This cone can be called "a cone of maxima". 

 

 In similar manner (fig 1, e,) ,  when n2 is equal to n1,all planes forming angles of 45° 

with n3 are subjected to maximum shearing stress. All these planes would be tangent to a cone 

around n3. 

 

Figure I, b-d, shows patterns for gradation between figure 1,a and e, and in each the 

positions of the 45° cones are marked by dashed lines. When n2 differs from either n1 or n3, 

only one plan is subject to maximum sharing stress, that at 45° from n1 and n3., As n2 varies 

away from n1 in value of the intensity of sharing on the cone of maxima around n1 decreases 

and the intensity on the cone of maxima around n3 increases. It will be noted also that on the 

90° arcs between n1 and n2, n2 and n3, and n1 and n3 the maximum shearing stress on each is at 

the 45° position. 
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Figure.1-Intensities of shearing stress plotted on stereographic nets. Nlt N2, and N3 are principal axes. 

Intensity at any point represents shearing stress on a plane whose pole is that point (or a plane tangent 

to the sphere at that point). For example: Point A in figure b represents a plane striking N. 54° W. and 

dipping 84° SW., which is subjected to a shearing stress of 4 (lb/in
2
, or whatever units are used) in this 

particular stress system. Dashed lines in a, b, c, and d represent, positions of cones around N1 and N3. 

See text for explanation. 

 

 The situation in figure 1, a, might be called "uniaxia compression". There a force is 

applied in one principal axis and the confining forces on the other two are equal. In figure 1, 

e, the situation might be linked to uniaxial tension. The intensity and orientation of maximum 

sharing stress is governed only by the relative values of n1, n2 and n3, Thus even if n3 

represents compression, if it is algebraically less than n1 and n2 the effect on shearing stress 

would be the same as if it were an axis of tension. 
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Figure.2-  a, Mohr's stress plane, showing relation between shearing stress intensity and normal stress 

intensity in octant of a sphere, b, Octant of sphere plotted on stereographic net, showing  relation of 

octant to Mohr's stress plane; clotted, clashed, and solid arcs correspond in a and b. 

 

Orientation of maximum shearing stress 
 

 The variation of orientation of maximum shearing stress on different planes in 

different stress systems is shown in figure 3. In this figure it is perhaps easiest to picture any 

plane as tangent to the hemisphere, and the orientation of maximum shearing stress in the 

plane is represented by the arrow at that point. In the pattern in figure 3,a, where n2 and n3, the 

orientation of maximum shearing stress on any plane can be thought of as parallel to the line 

of tangency between the plane and a cone around n1. Thus the arrows all point down, away 

from n1 representing a "dipslip" orientation on any plane. In figure 3, e, the orientation of 

maximum shearing stress on any plane is parallel to the line of tangency between the plane 

and a cone around n3. In the intermediate situations, figure 3, b-d, the orientation of maximum 

shearing stress varies between the two orientations indicated above. In figure 3, b-d, planes 

with very steep dips would have almost "strike-slip" orientation of maximum shearing stress, 

whereas as planes of low deep would have essentially "dip-slip" orientation. In figure 3, b, 

only the planes of steepest dip deviates greatly from "dip-slip" orientation of maximum 

shearing stress. 
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 The orientation of maximum shearing stress on any plane in a given stress system 

may be expressed mathematically as follows: 

 cos = 𝑠𝑠 − 𝑁 , 
 cos = 𝑠𝑠 − 𝑁 , 
 cos = 𝑠𝑠 − 𝑁 , 
 

Where, n1,n2 and n3  are principal stresses: a, b and c are angles from the principal axes to the 

plane's :normal; d, e, and, f are angles from the principal axes to the line of maximum 

shearing stress in the plane; S is the shearing-stress intensity; and .N is the normal stress 

intensity. 

 

 The orientation of maximum Shearing stress may be determined graphically, as 

Shown in figure 4. In this diagram plotted the distribution of normal stress (values taken 

directly from Mohr's stress plane as illustrated in fig. 2). Shearing Stress as shown at sample 

points A and B is oriented at right angles to the contours of normal stress, or "down-gradient" 

of normal stress. 

 

Relation of shear rupture 

 

 It is difficult to correlate conditions in the elastic state with conditions at and, after 

rupture, although it is the conditions in the elastic state that precede and lead to rupture. Any 

theory of rupture is confronted by this difficulty of correlation. 

 

 The present study of shearing stress is not a theory of rupture, for all that is concerned 

is a resolution of principal stresses into that component known as "shearing-stress". However 

a comparison of shearing stress and shearing rupture provides a useful basis for studying 

shearing rupture. 

 

 Experimental work described by Griggs (1936), Nadai (1931), and others has shown 

that the orientation of shearing rupture does not coincide with the planes of maximum 

shearing stress: rather, it develops on planes which form angles less than 45° with the axis of 

greatest compressive stress. Mohr's theory (Nadai 1931) includes both normal and shearing 

stress as governing factors to explain this variation of rupture planes from the  position of 

maximum shearing stress. 

 

 The following description is intended to point out that an angle of rupture less than 

 to the axis of maximum compression is quite expectable if shearing rupture is compared 

to friction problems, in which sliding or shearing depends both on the normal stress, tending 

to push the opposite parts together, and on the shearing stress, tending to slide the parts past 

one another. 

 

 Normal compressive stress on any plane in a stress system increases from zero to a 

maximum as the plane changes from an orientation, parallel to the axis of maximum 

compression to an orientation normal to that axis. (Riggs, Eric M. 2005), Thus less tangential 

stress (shearing stress) is required to cause shearing when the plane approaches an orientation 

parallel to the axis of greatest compressive stress. As normal stress varies from zero to a 

maximum, shearing stress changes from zero, reaches a maximum at , and again becomes 

zero at 90° to the axis of greatest compression (see fig. 2), If  normal stress were constant 

throughout the 90° are, shearing rupture should develop at the orientation of maximum 
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shearing stress. The tendency is for the body to shear at an orientation representing a 

compromise between low normal stress and high shearing stress. This would always be at 45° 

or less with respect to the axis of maximum compression. 

 

 
 

Figure.3- Orientation of maximum shearing stress plotted on stereographic nets. N1 .N2 and N3 are 

principal stresses and correspond approximately to values in figure I. For example: Point A in figure b 

represents a plane striking N.  W. and dipping  SW. On this plane the orientation of maximum 

shearing stress is parallel to dip. Point B represents a vertical plane striking N. 45° W. On this plane the 

orientation of maximum shearing stress is parallel to strike 

 

. 
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Figure . 4- Stereographic projection of normal stress, sharing direction of maximum shearing stress to 

be "down gradient" of normal stress as at sample points A and B. Points N1, N2 and N3 are principal 

normal stresses. 

 

 Although shearing stress alone does not govern the angle of rupture, it is a basic 

consideration. The patterns shown in figure I represent only shearing stress intensities, but the 

patterns of "potential rupture" in a homogeneous body of infinite dimensions should be very 

similar, differing only by having the zones of maxima at angles slightly nearer n1 .The 

variation would be dependent upon the material involved. 

  

The correlation of orientation of maximum shearing stress with orientation of shearing motion 

in rupture is essentially a direct correlation. It should vary from perfect correlation at the 

instant of rupture and should diverge only as the elastic continuity of the material is 

destroyed. 

 

Relation to faulting 

 

 Correlation of shearing stress and shearing rupture with faults in nature adds 

innumerable variables, which complicate the problem of analysis. Indeed, the variations 

possible are somewhat bewildering. Following are some major complicating factors. First, the 

shape of the tectonic blocks affects the distribution of shearing stress and orientation of 

rupture. Second, the strength anisotropism of rocks is of infinite variety. Third, the sequence 

of shifting orientations of stresses causing deformation is a factor very difficult to evaluate. 

Fourth, the distinction between shear rupture and tensional rupture in some cases is difficult 

to make. 

  

In the present study, it is intended, first, to indicate the manner in which faults will 

follow preferred orientations with respect to the stresses and second, to indicate the 

relationship of net slip orientation to the orientation of the fault plane and the stress system. 

To do this with some degree of simplicity, three of the above-mentioned complicating vari-

ables are considered absent, and only the factor of strength anisotropism is retained. It would 

seem, upon considering the regularity of some fault systems, that this assumed degree of 
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simplicity is not too uncommon in nature. In the great majority of cases, a variety of 

complicating factors is present; but, to understand such complex situations, it is necessary 

first to understand the simpler cases. 

 

Preferred orientations of faults 
 

 Faults will essentially follow a pattern of distribution similar to that of "rupture-

potential" maxima discussed in the preceding section. In homogeneous rocks, faults will tend 

to concentrate at orientations tangent to a cone, with apex angle less than 90 (45 radius), 

which has the axis of greatest compressive stress as its axis; or tangent to a cone, with apex 

angle greater than 90° (45° radius), which has the axis of least compressive stress as its axis. 

(Wachter, L.M., C.E. Renshaw, and E.M. Schulson 2009), 

 

 Strength anisotropism of the rock can outweigh in effect the distribution of rupture 

potential in homogeneous rocks described above, and the resulting pattern of rupture can be 

drastically altered. An orientation of great weakness in the rock may well become a fault 

plane, although that particular orientation is subjected to far less shearing stress than any other 

orientations in the rock. In effect, a plane of almost any orientation may become a fault in 

non-homogeneous rocks, but the over-all grouping of orientations will tend to follow the two 

come like patterns described above. 

 

 An example follows to show how faults, apparently belonging to one stress system, 

may be correlated on the basis of orientation. Figure 5 shows by stereographic diagram how a 

group of faults in the Pachmarhi, fall roughly tangent to a cone with an apex angle slightly 

greater than 90 (or radius of  ).N3 is located by trial of various circles to find one which is 

most nearly tangent to all the faults. The angular center of this circle is then interpreted as 

being a principal stress axis-in this case the axis of least compressive stress because of the 

reverse nature of all faults. 

 

 The faults used in the example were observed in a mine tunnel where exposures were 

excellent and orientations of fault planes and relative displacements could be determined with 

a good degree of accuracy. Displacements on the faults range between 6 inches and 2 feet, 

and all are within a single large tectonic block measuring thousands of feet on a side. The 

rocks are massive, banded, limey argillites, which seem to have behaved as relatively 

homogeneous material. Bedding planes have not acted as planes of weakness but were very 

useful in determining the relative offset on the faults. 

 

Orientation of net slip 
 

 Orientation of net slip on faults can be correlated almost directly with orientation of 

maximum shearing stress (fig. 3) as long as any continuity is maintained to the stress system 

after first rupture. The solid geometry of this relationship introduces complexities which are 

suggested by the following examples. Methods for dealing with certain aspects of the 

geometry are suggested. 

 

 Figure 6 shows by stereographic representation and map representation, how on three 

hypothetical faults, all striking the same way but of different dips, the net-slip orientation 

(heavy arrows) varies in three simple stress systems. This interpretation is taken directly from 

the pat-terns of orientation of maximum shearing stress shown in figure 3 and represents a 

direct correlation of net slip with maximum shearing stress for the purpose of illustration. In 

figure 7, a strike-slip fault, a reverse fault, and a normal fault result in a single uniaxial stress 

system, illustrating the complexity of net-slip orientations that can be produced in simple 

uniaxial stress systems, 
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Figure. 5- Stereographic projection of faults (plotted as great circles) in Pachmarhi, showing possible 

relation to cones around axis of least compressive stress. 

 

where orientation of the stress system is as shown in figure 3. The orientation of net slip on 

any plane can be readily determined from the diagrams. Where the stress system is tilted, this 

correlation is in some cases difficult to see without first rotating all planes and points into the 

orientation diagramed. It is in some cases useful to construct the resolved shearing-stress 

orientations for uniaxial tension and uniaxial compression. This provides two limits between 

which fall the orientations of maximum shearing stress for all cases where the values of the 

three principal stresses are different. As indicated previously, the orientations of maximum 

shearing stress in uniaxial tension and uniaxial compression parallel the line of tangency of 

the fault plane and a cone around either the axis of least or the axis of greatest compression. 

Thus, by constructing a circle (representing a cone) around the axis considered (see fig. 8), so 

that the circle is tangent to the fault plane (represented by the arc of a great circle), a line from 

the point of tangency to the sphere center represents the orientation of trend and plunge of 

maximum shearing stress. With the two limits determined, an approximation of the netslip 

orientation can be made. 

 

If a complete picture of fault-plane orientations and net-slip orientations on several 

faults is available, it should be possible to determine with some degree of certainty the 
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orientation and nature of the stress system producing the faults. If partial data are available, it 

may be possible to use this information in a limited prediction of the unknown factors. For 

example, if the orientations of several fault planes are known and it is believed that they are 

related to the same stress system, the orientations and relative movement of net slip on the 

various faults should have a definite relationship to one another and to the vault planes 

 

.  

 
Figure. 6- Orientation of maximum shearing stress (heavy arrows) on three sample planes, in three 

stress systems shown in stereographic representation (left) and expressed as orientation of net slip on 

faults (right). N1 = axis of greatest compressive stress, N2 = axis of intermediate compressive stress, 

N3 = axis of least Compressive stress. 
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Figure.7  - Orientation of maximum shearing stress (heavy arrows) on three sample planes, in sample 

uniaxis compression, where axis of greatest compressive stress (N1)plunges 30° to north, shown by 

stereographic projection and map representation. 

 

 
 

Figure.8 - Graphical determination of orientation of maximum shearing stress in simple tension and 

simple compression with any orientation of N1 N2, and N3.These two orientations serve as limits 

between which lie all possible orientations of maximum shearing stress on this plane with this stress 

system orientation, regardless of values of N1 N2, and N3.  

 

Limitation 

 
 Although it is believed that the geometry of shearing stress described in this paper 

supplies an extremely useful basis for the interpretation of t he Pachmarhi fault systems and 

the solution of some fault problems, it should he re-emphasized that the concept in the limited 
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form here presented can be applied directly to faults in relatively few and special cases. It is 

felt that the importance lies in establishing a basis for a better three-dimensional concept of 

the elementary problem. The application of these principles to actual field problems will 

require the accounting of perhaps several more variables, and, although this poses very 

serious difficulties, it does not lessen the need for an adequate, three-dimensional concept of 

stress as a foundation upon which the other variables can be stacked.       
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