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Denwa River during different cycles, lowlands and troughs were developed respectively on the less 

resistant rocks and in the down-faulted blocks, which were usually bordered by high-level residuals of 

former erosion surfaces 

________________________________________________________________________________ 

Abstract: - A method for the representation of bed-load data is 

given in this paper, in respect of steep mountainous river 

Denwa. The method is based on the conception that bed-load 

movement is the movement of bed particles, as governed by the 

laws of probability. By means of this method, an equation is 

obtained, which describes a great number of experiments in 
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channels with uniform beds. A group of experiments conducted 

on sand mixtures, provides material for describing another 

application of the method. 

___________________________________________________________________________________ 

 

Introduction 

 

In normal course of denudation, the River Denwa has cut their way through steep 

mountainous tough Basalt flows into the underlying rocks. This process is naturally most 

rapid in the vicinity of the scarp, where erosion is greatest. This is partly due to the softness of 

the underlying rocks that the Denwa River is full of tough basalt boulders, which ground 

everything came into contact with them, as do ball in a ball mill. There are typical turbidity 

currents of a specific gravity of the flow, which is greater than that of the densest stagnant 

water in the basin. The high turbidity current of high density applied to current of sufficient 

density allow the Denwa River to carry a large bed load in suspension. At the bottom of the 

river slop, the flow possesses a large momentum and flows for a distant at a gradually 

decreasing velocity. 

 

In the past, the problem of bed-load movement has been studied mostly by empirical 

methods. More recently, there has been a tendency to base movement studies on the theories 

of turbulence. (Hunter, Rouse. 1939,  Benda, Lee, Marwan a. Hassan, Michael Church, and 

Christine 2005) It is the writer's belief that an approach to the problem of Movement can be 

made by a combination of the empirical and rational methods and that the results can be 

expressed by dimensionless plots. 

 

Before proceeding with the development of these studies, it is necessary to discuss briefly 

two important considerations: (1) The difficulty or impossibility of defining, accurately, the 

so-called "critical" values; and (2) the possibility of correlating bed-load movement with local 

fluctuations in water velocity along the bed. 

 

1. Attempts have been made in the past to derive an expression for the "initial movement" 

that is governed by certain definable "critical" conditions to be- used as the first step 

toward the solution of the Movement problem. In interpreting the results of many 

experiments on bed-load movement, and in comparing them with those obtained by other 

experimenters, the writer has concluded that a distinct condition for the beginning of 

movement does not seem to exist. It is just as impossible to determine the limit of initial 

movement as to determine the maximum possible flood of a river. Just  as an expert is able 

to predict the probable maximum flood of a river to be expected within a given range of 

years, however, so is he able to define the hydraulic conditions in a stream, that will 

produce any given small rate of movement, which might be called the limit. This value can 

be chosen without any restriction. It is difficult to believe that the hydraulic conditions that 

will produce such movement could have any special meaning in the problem of movement 

as a whole. Therefore, the writer will not use the conception of critical tractive force, or 

any other critical value, when the term "critical" pertains to the flow, where movement 

begins. 

 

2. In general, movement of bed load has been described as follows:'  a particle of the bed 

moves when the pushing force or lifting force of the water overcomes the weight of the 

particle. This push or "lift" is expressed in terms of the average flow (William ,W. Rubi 

,1938, Banziger, R. & Burch, H. 1990). The usual conception is that, movement begins 

when the velocity increases enough to overcome the weight, and that, with further 

increasing velocity of the water, the rate of movement will also increase; following a 

certain law that is found empirically. To prove that this conception is misleading, assume 

that the force acting on a particle could be described by means of the average flow alone. 

If the velocity of the water is increased gradually to a point at which the first particle 
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would just be moving, the force acting on all the other particles of the same kind and size 

would move those too. Therefore, in a uniform bed, where all particles have the same size 

and shape, all would start moving together; they would be unable to settle again because at 

all points the water velocity is just sufficient to start movement. If this is true, there could 

be no law governing the rate of movement, but only a critical velocity. At all under critical 

velocities, there would be no movement, whereas, at all supercritical velocities, the rate of 

movement would be limited only by the number of particles available (Yager,  Em . 2007 , 

Herbert Lang, A. Musy1990 ).  Therefore, it cannot be presumed that the rate of bed-load 

movement is a function of the average flow. Instead it is proposed to express it in terms of 

the fluctuations of the water velocity near the bed (Mario Aristide Lenzi, Luca Mao,  

Francesco Comiti  2006 , Chiari ,M . 2011).   

 

Results of previous studies
 
(Wasserbau, Hydrologie und Glaziologie. Ethz. Nr. , Zurich 

Rickenmann, D., 1990 ) describing the movement of a bed-load particle by means of 

statistical methods are to be used in an attempt to coordinate the rate of movement with the 

fluctuations of the water velocity near the bed. The results of these studies can be summarized 

as follows: 

 

(a) These flume studies dealt with the movement of rather coarse particles along a bed 

consisting of the same kind of grains. Being coarser than 2 cm. in these particles 

always remained near the bed, rolling, sliding and, sometimes, according to the 

normal description of bed-load movement.   It was found that the moving bed load 

and the bed on which it was moving formed a unit, in as much as there was a steady 

and intensive exchange of particles between the two. Thus it is concluded that all the 

particles of the bed, down to a certain depth, take equal part in the movement, 

alternatively moving and returning into the bed (Warburton ,Jeff 1992). 

 

(b) Bed-load movement is to be considered as the motion of bed particles in quick steps 

with comparatively long intermediate periods of rest. Thus bed-load movement is a 

slow downstream motion of a certain top-layer of the bed ( Hydraul, J. Eng. 2008). 

 

(c) The average step of a certain particle seems always to be the same even if the 

hydraulic conditions or the composition of the bed changes; and 

 

(d)  Different rates of movement are produced by a change in average time between two 

steps and by a change in the thickness of the moving layer. 

 

These concepts permit the development of a formula in general terms. The rate of 

movement will be described by means of this average "step." 

 

Derivations 

 
This paper will treat only the bed-load movement of uniform sediment and mixtures 

acting like uniform sediment. In both cases it is possible to describe the sediment by a 

representative diameter 𝐷 and its density 𝜌௦. The expression "acting like uniform material" 

means that both bed material and moving material have the same composition and, therefore, 

the same representative diameters. It is possible in this case to describe movement at a certain 

point of the bed by one symbol; namely, the rate of movement ݍ௦. (1) Bed material moving in 

suspension; and (2) bed-load movements, in which the composition of the bed is essentially 

different from the composition of the moved material. 
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Figure: 1 

 

A bed-load formula is an equation linking the rate of bed-load movement with 

properties of the grain and of the flow causing the movement  formula of this kind can be 

derived by expressing in an equation, the fact that all particles passing the unit  width of a 

section as bed load are just on the way to perform one of these steps of the constant length 𝐿 = 𝜆଴𝐷. Figure.1 shows the cross section   and  the  rectangular area with the length  L and 

with unit width, where all particles start the steps that together form the rate of movement ݍ௦ 

.Eq. 1 expresses the condition that the total volume passing the unit width of the section per 

second (ݍ௦ divided by the specific gravity of the particles, both under water) equals the total 

volume of all the particle starting a step during a second in the aforementioned rectangular 

area. This volume is obtained by multiplying the number of particles in the surface of the area 

by the probability that a particle in the bed surface will start moving during a given instant 

and with the volume of a given particle.  Eq. 1 follows: 

 ௤𝑠(𝜌𝑠−𝜌𝑓)௚ = 𝐿𝐴భ𝐷మ ଶ𝐷ଷܣ௦݌ = 𝐴మ𝐴భ 𝜆଴݌௦𝐷ଶ,       (1) 

 

In which: qs = the rate of Movement, in weight (under water), per unit of width, per second;  ρs and ρf = density of particle and fluid, respectively;  ݃ = acceleration due to gravity; 

 D= representative diameter of the particles;  Aଵ and Aଶ = dimensionless ratios such that AଵDଶ = the area that the grain covers in the bed 

and  AଶDଷ  = the volume of the particle; ps = the probability that a particle will start 

moving in any given second; and  λ଴ the dimensionless measure for the length of the single 

step. 

 

It must be kept in mind, however, that 𝜆଴ may or may not be a constant; that is, and it has not 

been proved to be constant. 

 

If ܣ and 𝐷 are transposed to the left side of Eq. 1, that side will include all terms 

pertaining to the grain, whereas the right side 𝜆଴݌௦is still an unknown function of the flow-

that is: 

 ௤𝑠(𝜌𝑠−𝜌𝑓)௚𝐷మ 𝐴భ𝐴మ = 𝜆଴݌௦,  . . . . . . . . . . . . . .       (2) 

 

In this equation ܣଵ, ܣଶ and 𝜆଴ are dimensionless, but ݌௦ has the dimension ݁ݏ𝑐−ଵ. In order to 

make the right side of Eq. 2 dimensionless ݌௦must be multiplied by a given time. The most 

reasonable time to use is the average time, ݐ, required for the water to remove one particle 

from the bed. If ݌ =  is dimensionless and gives the number of steps that start from ݌ ௦ then݌ݐ

any given place during the time it takes to remove one particle. The maximum value of ݌ is ͳ, 

and indicates that at all times and at all points particle by particle starts to move. The 
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minimum value of ݌ is zero; therefore, ݌ expresses the probability that a step is about to begin 

at a given place. These steps start everywhere on the bed. Therefore, ݌ can be interpreted as 

the probable part of the bed area in which steps are starting. A step is started only at a point 

where the hydraulic lift of the water is able to overcome the weight of the particle. Therefore, ݌ expresses the probability that the hydraulic lift on any particle along the bed is about to 

overcome the weight of the particle. 

 

Unfortunately there is no method of expressing or measuring the time ݐ required for 

the lifting force to pick up a particle. It is assumed to be proportional to some other 

characteristic time of the particle in .the water. The time that the particle requires to settle in 

water, a distance equal to its own diameter 𝐷, is chosen for this characteristic. The reason for 

choosing this time was the fact that it is the only expression with the dimension of a time, 

which is representative for the behavior of the particle in the liquid without including any 

characteristic of the flow. This time can be expressed as 

 𝐷௩𝑓 = ଵ𝐹 √ 𝐷𝜌𝑓௚(𝜌𝑠−𝜌𝑓),  . . . . . . . . . . . . . .       (3) 

 

In which: 𝑣௙ = the velocity of a particle settling in water; and 𝐹 = parameter for settling 

velocity. In Equation 3, F= 0.816 for particles greater than 1 mm, settling in water of normal 

temperature.Fig.2 shows the values of 𝐹 for smaller grain sizes.  Characteristics of the 

materials in Fig. 2 are Kinematic viscosity 𝑣 = ఓ𝜌𝑓 equals, for water, Ͳ.Ͳͳʹ, and, for air, Ͳ.ͳ͸, 𝑐݉ଶ݁ݏ ݎ݁݌𝑐; and specific densities,
𝜌𝑠−𝜌𝑓𝜌𝑓 . are as follows- 

 

Material Specific density 

Barite in water 3.22 

Gravel in water 1.65 

Soil in water 0.25 

Gravel in air 2,210.0 

 

In Fig. 2 the following equation for the settling velocity derived by William W. Rubey has 

been used for the determination of F: 

 𝑣௙ = √ଶଷ 𝜌𝑠−𝜌𝑓𝜌𝑓 𝐷 + ଷ଺ఓమ𝜌𝑓మ𝐷మ − ଺ఓ𝜌𝑓𝐷 = 𝐹√𝐷݃ 𝜌𝑠−𝜌𝑓𝜌𝑓  . . . . . . . . . . . . . .    (4) 

 

In this formula all terms are measured in centimeter-gram-second units. Hence, 𝐹 will be 

 𝐹 = √ଶଷ + ଷ଺ఓమ௚𝐷య𝜌𝑓(𝜌𝑠−𝜌𝑓) − √ ଷ଺ఓమ௚𝐷య𝜌𝑓(𝜌𝑠−𝜌𝑓). . . . . . . . . . . . . .    
(5) 

 

The time ݐ required to remove a particle from its place in the bed then will be 

ݐ  = 𝐴య𝐹 √ 𝐷𝜌𝑓௚(𝜌𝑠−𝜌𝑓) = ௣௣𝑠. . . . . . . . . . . . .       (6) 

 

in which ܣଷ is still an unknown constant. Eq. 1 can now be changed to the form 
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Figure: 2 Parameter 𝐹 for determining the settling velocity of various materials 

݌  = 𝐴భ𝐴యఒబ𝐴మ [ଵ𝐹 ௤𝑠(𝜌𝑠−𝜌𝑓)௚ √ 𝜌𝑓𝜌𝑠−𝜌𝑓 ଵ௚బ.ఱ𝐷భ.ఱ] . . . . . . . . . . .     (7) 

 

In an attempt to express ݌ as the probability of the local hydraulic lift to overcome the weight 

of the particle, ݌ refers to the part of the bed in which locally (at a certain moment) the lifting 

force is greater than the weight of the particle. It can be stated that ݌ refers to the part of the 

bed in which the ratio of the local lift to the average lift is greater than the ratio of the weight 

of the particle to the average lift.   In mathematical terms this is 

݌  = ݂ ቀ 𝑊௘𝑖௚ℎ௧ ௢௙ ௧ℎ௘ ௣𝑎௥௧𝑖𝑐𝑎௟𝐴௩௘௥𝑎௚௘ ௟𝑖௙௘ ௢௙ ௧ℎ௘ ௣𝑎௥௧𝑖𝑐௟௘ቁ. . . . . . . . . . .      (8) 

 

in which is an unknown function. The weight of the particle under water is ܣଶ𝐷ଷ(𝜌௦ −𝜌௙)݃,and the average lift is 

 Lift =  ସ𝐷ଶ𝑣ଶ𝜌௙. . . . . . . . . . . .        (9)ܣ

 𝑣 being a local velocity at some still unknown distance from the bed. An approximate value 

for 𝑣 is: 

 𝑣 = ͳͳ.͸√ 𝜏𝜌𝑓 . . . . . . . . . . . .        (10) 

 

Eq. 10 may need to be corrected in the future. It defines the 𝑣݈݁݋𝑐𝑖ݕݐଷ at the edge of the 

laminar boundary layer if the wall is smooth, or the velocity at the distance 𝐷 if the wall is 

rough, in which 𝐷 is a measure of average roughness.   The shearing stress 𝜏 along the wall is 

 𝜏 = SR𝜌௙݃ . . . . . . . . . . . . .         (11) 

 

in which ܵ is the slope and ܴ is the hydraulic radius; therefore 
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𝑣 = ͳͳ.͸√ܴܵ݃. . . . . . . . . . . .         (12) 

 

Eq. 8 can now be written 

݌  = ݂ [ 𝐴మ𝐷య(𝜌𝑠−𝜌𝑓)௚(𝐴ర𝐷మ𝜌𝑓)ሺଵଷହ ௌ ோሻ௚] = ݂ [ 𝐴మଵଷହ𝐴ర × (𝜌𝑠−𝜌𝑓)𝐷𝜌𝑓 ௌ ோ ]. . . . . . . . .    (13) 

 

By assuming that Eq. 10 gives the correct value for the velocity,  Eqs. 7 and 13 can be 

combined and a new movement formula formed: 

ܣ  {ଵ𝐹 ⌊ ௤𝑠(𝜌𝑠−𝜌𝑓)௚] √ 𝜌𝑓𝜌𝑠−𝜌𝑓 ଵ௚బ.ఱ𝐷భ.ఱ} = ݂ ܤ] (𝜌𝑠−𝜌𝑓𝜌𝑓 𝐷ௌ ோ)] =  (14)     .݌

 

in which 

ܣ  = 𝐴భ𝐴యఒబ𝐴మ. . . . . . . . . . . . .                   (15a)  

and 

ܤ  = 𝐴మଵଷହ 𝐴ర . . . . . . . . . . . . . . . .                   (15b) 

 

are constants which, however, may vary with different shapes of the particles. Whether 𝜆଴ 

and ܣସ really are constant under all conditions must be determined later. Introducing 

 ∅ = ଵ𝐹 ௤𝑆(𝜌𝑠−𝜌𝑓)௚ √ 𝜌𝑓𝜌𝑠−𝜌𝑓 ଵ௚బ.ఱ𝐷భ.ఱ . . . . . . . . . . . . .                (16a) 

and 

 𝜓 = 𝜌𝑠−𝜌𝑓𝜌𝑓 𝐷ௌ ோ . . . . . . . . . . . . . . .                  (16b) 

 

Eq. 14 can be written in the short form: 

𝜙ܣ  = ݂ሺܤ𝜓ሻ =  (17)                    . . . . . . . . . . . . . . . ݌

 

The function ݂ as well as the two constants ܣ and ܤ must be determined empirically. Data 

from a great number of measurements using various materials have been analyzed, and values 

of 𝜓 and ∅ computed.  A semi logarithmic plot of these values is shown in Figure. 3(a). The 

grain sizes range from Ͳ.͵ͳͷ to ʹͺ.͸ͷ ݉݉ in diameter, the water depth from ͳͺ 

to ͳ,ͳͲͲ ݉݉, and the specific gravity of the particles from ͳ.ʹͷ to Ͷ.ʹʹ. All these 

experiments are performed in flumes with uniform sediment. The experiments conducted by 

Zurich and Meyer-Peter, E 1934 are described briefly in this paper. Whereas, the remaining 

experiments are taken from the generally known paper by (G. K. Gilbert, 1914). It seems that 

all these points follow, reasonably, a single curve. It might be mentioned also that the 

hydraulic radius ܴ is computed by a method by (Clifford R. Blizard, Ellen E. Wohl 1997) that 

eliminates the effect of side-wall friction and gives results comparable to a channel of infinite 

width.  

 

In Fig. 3(a) all the points with values of 𝜙 less than Ͳ.Ͷ seem to follow the straight 

line, curve (1), the equation of which is 

 Ͳ.Ͷ͸ͷ𝜙 = ݁−଴.ଷ9ଵ𝜓.. . . . . . . . . .        (18) 
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If Eq. 18 is assumed to represent the law of Movement: 

ܣ  = Ͳ.Ͷ͸ͷܤ = Ͳ.͵ͻͳ݂ሺݔሻ  = ݁−𝑥]. . . . . . . . .                     (19) 

 

It remains only to explain why the points 𝜙 > Ͳ.Ͷ seem to be too high. If Eq. 18 is 

accepted as a general law, the value 𝜙 > ʹ.ͳͷ  would not be possible because ݌ cannot 

exceed ͳ. Therefore, values 𝜙 > ʹ.ͳͷ are possible only if ܣ becomes smaller (ܣ consists of 

the constants ܣଵ, ܣଶ, ܣଷ and 𝜆଴). 

 

The constants ܣଵ, ܣଶ and  ܣଷare not likely to change with increasing values of p, but 𝜆଴ does. The distance 𝜆଴ has been found to be constant for small values of ݌—that is, when 

the hydraulic lift seldom exceeds the weight. As ݌ increases, it more often happens that, in the 

very spot where the step would have ended, there exists a local lift strong enough to keep the 

particle from settling. The oftener this happens the more 𝜆଴ seems to increase on the average. 

The symbol ݌ expresses the probability that the lift exceeds the weight of the particle for 

every point on the bed. Therefore, only ሺͳ —  ሻ particles of the unit will be able to settle݌ 

after a step 𝜆଴. The other p particles will start for another 𝜆଴,  and out of these ሺͳ—  will ݌ ሻ݌

settle after the second 𝜆଴,'and so on.   The average distance traversed by the unit, therefore, is: 

 𝜆 = ∑ ሺͳ − ௠−ଵ݉ 𝜆଴݌ሻ݌ =∞௠=௢ ఒబଵ−௣ . . . . . . . . .      (20) 

 

in which ݉ = 𝑎 whole positive number. Introducing 𝜆  instead of 𝜆଴ yields curve (2) instead 

of curve (1). This new curve follows the plotted points more closely than curve (1). 

 

The constant ܣସ for the lift in Eq. 9 is introduced without further discussion. The 

question arises whether the deviation of the points from curve (2) could be due to a change in 

the constant ܣସ.   Constant ܣସ could change only with the Reynolds number of the flow 
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around the particle, or with the value of  
𝐷𝛿, the ratio of the grain size to the thickness of the 

laminar layer. Eq. 10 gives the local velocity of the water: 

 𝑣 = ͳͳ.͸√𝜏బ𝜌𝑓 = ͳͳ.͸√ܵ ܴ ݃ . . . . . . . . . .      (21) 

 

The Reynolds number of the local flow is 

 
Figure: 4. Denwa River, Bed –Load experiments showing the relation between ∅ and ↓ 

 ܴ = 𝐷 ௨௩ = ଵଵ.଺ 𝐷√ௌ ோ ௚௩ . . . . . . . . . . .        (22) 

 

and the thickness of the laminar layer is 

 𝛿 = 𝑣 𝐷 ௩𝜏బ 𝜌𝑓⁄ . . . . . . . . . . .        (23) 

or 

 𝐷𝛿 = 𝐷√ௌ ோ ௚ଵଵ.଺௩ = ோ𝐷ଵଷସ . . . . . . . . . . .        (24) 

 

As  
𝐷𝛿   differs from ܴ𝐷 only by a constant factor, it is sufficient to study the influence of only 

one of them.  The deviation of the measured points from curve (2) Plotted against  𝐷 𝛿⁄    

failed to disclose any satisfactory relationship.   Each grain size appears to follow a separate 

curve; therefore, it appears much more probable that ܣସ is a constant, but that the exponential 

law for ݌ does not extend down to 𝜓 = Ͳ. Another explanation for the deviation of the points 

may be that part of the grains, have been moved in suspension. In this case those experiments 

would be outside the field of application of Eq. 17. It is emphasized that in most Pachmarhis 

rivers, the bed load is largely transported under conditions pertaining to this part of the curve. 

 

The title of this paper was chosen specifically to avoid the impression that any 

attempt was being made to discover "the law of bed-load movement," because it is the writer's 

belief that such universal law does not exist in a simple mathematical form. Just as it is 

necessary to distinguish between friction in smooth and rough pipes or channels, so it is 

necessary to distinguish between different kinds of movement. Nevertheless, the distinction 
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between friction along rough, wavy, and smooth walls was only possible on the discovery of 

the general method of plotting the friction factor against Reynolds' number. An attempt is 

made in this paper to determine a corresponding method of presenting movement data by 

introducing the quantities 𝜓 and 𝜙, both of which are derived by pure speculation, using only 

generally known facts. 

          

  As an example, the method is used to discuss the results of experiments with sand mixtures, 

conducted at the laboratory of  Tawa  Dam  Tawanagar (M.P.). Figure. 3(b) gives the results 

of these experiments as a 𝜙 − 𝜓 graph. Curves (1) and (2) are transferred from Figure. 3(a), 

and all the various sand mixtures have been assigned different symbols. 

 

The first problem was to determine the effective diameter of the mixtures— that is, 

the value of 𝐷 that would represent the mixture in the formulas. Experience gained in 

previous studies has convinced the writer that the most usable value for this effective diameter 

is the grain size of which ͵ͷ% to Ͷͷ% of the material is finer. This value is readily obtained 

from the cumulative size-frequency curve of the mixture. The ͶͲ% value was used for Figure. 

3(b), although it is realized that the use of a 35% value would tend to bring the high points 

closer to curves (1) and (2). 

          

    The distribution of the points in Figure. 3(b) is very interesting to note. At first 

glance one observes that the points for sands 1, 2, and 9 distinctly follow curves (1) and (2). 

Sands 3, 4, and 5 follow the curves in the upper part only. Sands 6, 7, and 8 fall below the 

curves at all points, but a distinct grouping of points along a line curve (5) is noticed. 

            

The two curves, (2) and ሺܵሻ, seem to represent limits of maximum and minimum 

Movement for a given value of 𝜓. In searching for an explanation of this the three following 

questions naturally arise: (1) is there any relationship between the position of the points and 

friction loss? (2) Is there any relationship between the position of the points and the condition 

of the bed? (3) Would a similar distribution be possible also in experiments with uniform 

material, or is it characteristic only of mixtures? 

 

With regard to question (1), it was found that Manning's ݊, without exception, 

increased suddenly when the points leave curves (1) and (2). This means that the bed becomes 

rougher than the original material as soon as the rate of movement decreases below that 

shown by curves (1) and (2), The reverse is also true—that is, the rate of movement will 

decrease as soon as the roughness of the bed increases. 

 

The reason for this increased roughness is of interest. As a rule, riffles begin to form 

precisely at the place where the points depart from curve (1). If riffles are the reason for the 

increase in Manning's n, this value must always increase when riffles are formed. Sand 1 does 

not show this increase and sand 2 only very slightly—although these sands develop general 

riffles like all the other mixtures. Therefore, the riffles are not the reason for the increased 

roughness, but merely happen to develop simultaneously. This answers question (2) in the 

negative. 

 

Question (3) suggests that perhaps some kind of sorting of the grains is the reason for 

the deviation from curve (1) and for the increase of roughness at the same time. It is the 

writer's belief that this is true, but unfortunately it is not subject to direct proof. This sorting 

would be caused by the lack of material in the upper end of the flume. If the sand is fed in at a 

smaller rate than the stream is able to transport it, the bed starts to build some kind of a 

protective layer of coarse grains on the surface and buries all the finer grains beneath. The 

average grain size in this coarse layer is much greater than the average grain size in the bed, 

and scour is either reduced or completely prevented. For this reason, it is impossible, during 

an experiment, to detect a lack of feeding merely by watching the position of the bed. Curve 

(1) gives the results obtained when the highest quantity of sand is fed in that can be 
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transported without deposition, and curve (S) gives the smallest amount that will be 

transported without scour on the protecting layer. If D is the effective diameter of the original 

bed material, it is reasonable to believe that these two limits coincide for uniform material and 

that curve (S) falls more and more below curve (1) as the material decreases in uniformity. 

 

These are merely some suggested methods of studying bed-load Movement. (Benda, 

lee, Marwan a. Hassan, Michael Church, and Christine 2005 , Yager, Em. 2007  , Herbert 

Lang, A. Musy1990 ) It would be very easy to determine, by experiment, the validity of such 

reasoning. If the interpretations are correct, it should be possible to determine all points 

between the two limiting curves by merely changing the rate of sand feed. It would also be 

very instructive to conduct a similar group of experiments in the opposite sequence—that is, 

by beginning with high discharges and progressively decreasing the discharge and load. If the 

explanation is correct, one will probably not return to the same curve obtained with increasing 

flow. This would also answer question (3). This 𝜙 − 𝜓 method is offered as a new procedure 

for studying bed-load problems. It may be possible to refine the method by introducing 

corrections for the velocity v, and various constants; but as a whole it seems to be satisfactory 

in its present form. 

 

Conclusion 

 

In concluding, it may be stated that the treatment of movement problems by means of 

statistical methods, made possible by the use of large-scale experiments, led to the proposed 

method of representation: 

 

Two dimensionless functions 𝜓 and 𝜙 have been developed theoretically, 𝜓 as the 

ratio of the forces acting on the particle, and 𝜙 including the rate of movement and the size 

and settling velocity of the particle. The interrelation between these two functions expresses 

the law of movement, and at the same time expresses the statistical distribution ݌ of the 

velocity of the liquid close to the laminar boundary layer. The movement law is derived by 

use of a great many experiments with uniform sediment, and is then used in discussing 

published results of experiments with sand mixtures. 
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