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The bed of Chandan River before reaching Nahlesara Dam - Balaghat, India. Nearly this gravel-bed river 

are frequently arranged into patches of distinct grain size and sorting. Some of these patches have been 

observed to persist over timescales of decades, while others are able to freely move downstream. Bed 

surface heterogeneity may also be a primary control on sediment transport rates, and because bed 

material exerts a strong control on the near bed hydraulic environment, patches may have important 

implications for aquatic ecology. 

 

Abstract.  - The 1-D Sklar and Dietrich’s (2004), saltation-abrasion model of channel bedrock 

incision of that explains the erosion rate is buffered by the surface area fraction of alluvium covered 

bedrock, was a major advance over models that treat river erosion as a function of bed slope and drainage 

area. However their model is, limited because it calculates bed cover in terms of bedload sediment supply 

rather than local bedload transport. It utterly assumes that as sediment supply from upstream changes, the 

transport rate adjusts continuously everywhere downstream to match. This assumption is not valid in general, 

and can give increase to unphysical results. Here it is presented a unified morphodynamic formulation of 

both channel incision and alluviation that specifically tracks the spatiotemporal variation in both bedload 

transport and alluvial thickness. It is relating the bedrock cover fraction to the ratio of alluvium thickness to 

bedrock macro-roughness, rather than to the ratio of bedload supply rate to capacity bedload transport. The 

new formulation (MRSAA) predicts waves of alluviation and ratification in addition to bedrock erosion. 

Embedded in it are three physical processes: alluvial diffusion, fast downstream advection of alluvial 

disturbances, and slow upstream migration of incisional disturbances. Solutions of this formulation over a 

fixed bed are used to demonstrate the stripping of an initial alluvial cover, the emplacement of alluvial cover 

over an initially bare bed and the advection-diffusion of a sediment pulse over an alluvial bed. A solution for 

alluvial-incisional interaction in a channel with a basement undergoing net rock uplift exhibits how an 

impulsive increase in sediment supply can quickly and completely bury the bedrock under thick alluvium, 

thus blocking bedrock erosion. The transition point separating an alluvial reach upstream from an alluvial-

bedrock reach downstream migrates upstream in the form of a "hidden knickpoint" as the river exhibits to 
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rock uplift or base level fall. A tectonically more complex rock uplift subject to a localized zone of subsidence 

yields a steady-state solution that is not attainable with the original saltation-abrasion model. A solution for 

the case of bedrock-alluvial co-evolution upstream of an alluviated river mouth illustrates how the bedrock 

surface can be progressively buried not far below the alluvium. As the model tracks the spatiotemporal 

variation in both bedload transport and alluvial thickness, it is applicable to the study of the incisional 

response of a river subject to temporally varying sediment supply. It has the potential to capture the response 

of an alluvial-bedrock river to massive impulsive sediment inputs associated with landslides or debris flows. 

 

Introduction 
The speed of fluvial landscape evolution is depends on the rate of downcutting into bedrock 

across the river network. Both process of river incision and hillslope response is self-promoting and 

self-limiting (Gilbert, 1877). Even if there are various processes that can lead to erosion into bedrock, 

It is here focused on incision driven by abrasion of a bedrock surface as moving particles collide with 

it. Low rates of incision entail some sediment supply from upstream hillslopes, which provides a 

modicum of abrasive material in river flows that further facilitates bedrock channel erosion. Faster 

downcutting leads to higher rates of hillslope sediment supply, boosting the concentration of erosion 

"tools" and bedrock wear rates, but also leading to greater cover of the bedrock bed with sediment 

(Sklar and Dietrich, 2001, 2004, 2006; Turowski et al., 2007; Lamb et al., 2008; Tur-owski, 2009). 

Too much sediment supply leads to choking of the channels by alluvial cover and the retardation of 

further channel erosion (e.g., Stark et al., 2009). This competition between incision and sedimentation 

leads long-term eroding channels to typically take a mixed bedrock-alluvial form in which the pattern 

and depth of sediment cover fluctuate over time in apposition to the pattern of bedrock wear. Treating 

the erosion of bedrock rivers by theoretical approaches have by shifted over recent decades 

(Turowski, 2012). The pioneering work of Howard and Kerby (1983) focused on bedrock channels 

with little sediment cover; it led to the detachment-limited model of Howard et al. (1994), in which 

channel erosion is treated as a power function of river slope and characteristic discharge, and the 

"stream-power-law" approach, in which the power-law scaling of channel slope with upstream area 

underpins the way in which landscapes are thought to evolve (Whipple and Tucker, 1999; Whipple, 

2004; Howard, 1971, foreshadows this approach). At the other extreme, sediment flux came into play 

in the transport-limited treatment of mass removal from channels of, for example, Smith and 

Bretherton (1972), in which no bedrock is present in the channel and where the divergence of 

sediment flux determines the rate of lowering. Whipple and Tucker (2002) blended these approaches, 

and imagined a transition from detachment limitation upstream to transport-limited behavior 

downstream. They also discussed, in the context of the stream-power-law approach, the idea emerging 

at that time (Sklar and Dietrich, 1998) of a "parabolic" form of the rate of bedrock wear as a function 

of sediment flux normalized by transport capacity. Laboratory experiments conducted by Sklar and 

Dietrich (2001) corroborated this idea, and they led to the first true sediment flux-dependent model of 

channel erosion of Sklar and Dietrich (2004, 2006). This saltation-abrasion model was subsequently 

extended by Lamb et al. (2008) and Chatanantavet and Parker (2009). It was explored experimentally 

by Chatanantavet and Parker (2008) and Chatanantavet et al. (2013); evaluated in a field context by 

Johnson et al. (2009), Chatanantavet and Parker (2009), Hobley et al. (2011) and Turowski et al. 

(2013); adapted to treat alluvial intermittency by Lague (2010); and given a stochastic treatment by 

Turowski et al. (2007), Turowski (2009) and Lague (2010), the latter of whom introduced several new 

elements. Howard (1998) presents an alternative formulation for incision that relates bedrock wear to 

the thickness of alluvial cover rather than sediment supply, in a form that can be thought to be a 

predecessor of the present work. 

At the heart of their saltation-abrasion model lies the idea of a cover factor  corresponding to 

the areal fraction of the bedrock bed that is covered by alluvium (Sklar and Dietrich, 2004). This 

bedrock bed is imagined as a flat surface on which sediment intermittently accumulates and degrades 

during bedload transport over it. The fraction of sediment cover is assumed to be a linear function of 

bedload transport relative to capacity. Bedrock wear takes place when bedload clasts strike the 

exposed bedrock. In the simplest form of the saltation-abrasion model, the subsequent rate of bedrock 

wear is treated as a linear function of the impact flux and inferred to be proportional to the bedload 

flux, which leads to the parabolic shape of the cover-limited abrasion curve.The saltation-abrasion 

model is considerably more sophisticated and flexible (Sklar and Dietrich, 2004, 2006) than this 
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sketch explanation can encompass. It does, however, have three major restrictions. First, it is 

formulated in terms of sediment supply rather than local sediment transport. The model is thus unable 

to capture the interaction between processes that drive evolution of an alluvial bed and those that 

drive the evolution of an incising of bedrock-alluvial bed. Second, for related reasons, it cannot 

account for bedrock topography significant enough to affect the pattern of sediment storage and rock 

exposure (Zhang et al, 2015). Such a topography is illustrated in Fig. 1 for the Wainganga River, 

India. Third, it is designed for quasi-steady conditions, and thus cannot account for the effects of 

cyclic variation in sediment supply on channel development downstream of the point of sediment 

supply. 

Here all three of these issues are addressed in a model that allows both alluvial and incisional 

processes to interact and co-evolve. It is done by relating the cover factor geometrically to a measure 

of the vertical scale of elevation fluctuations of the bedrock topography, here called macro-roughness, 

rather than to the ratio of sediment supply rate to capacity sediment transport rate. This model 

encompasses downstream-advecting alluvial behavior (e.g., waves of alluvium), diffusive alluvial 

behavior and upstream-advecting incisional behavior (e.g., knickpoint migration). In order to 

distinguish between the model of Sklar and Dietrich (2004, 2006) and the present model, Zhang et al 

(2015) refers to the former as the CSA (Capacity-based Saltation-Abrasion) model, and the latter as 

the MRSAA (Macro-Roughness-based Saltation-Abrasion-Alluviation) model. It is pointed out here 

that the first and third issues indicated above have also been addressed by Lague (2010), although in a 

substantially different way than presented here. The notation used in this paper is defined in 

Table A1. 

 

2 Capacity-based Saltation-Abrasion (CSA) geomorphic incision law and its implications for 

channel evolution: upstream-migrating waves of incision 
 

2.1   CSA geomorphic incision law 
Sklar and Dietrich (2004, 2006) present the following model, referred to here as the Capacity-

based Saltation-Abrasion (CSA) model, for bedrock incision in mixed bedrock-alluvial rivers 

transporting gravel. Defining ܧ as the vertical rate of erosion into bedrock, ݍ as the volume gravel 

transport rate per unit width (specified in their model solely in terms of a supply, or feed rate ݍ) and ݍ  as the capacity volume gravel transport per unit width such that ݍୟ <  ,ୟୡݍ
 

  
 

Figure 1. Views of the Wainganga  River, a mixed alluvial-bedrock river in  Balaghat,  India.  

Microscopic roughness of the bed and alluvial patches. The Channel width is about 100 m. 
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ܧ                                                                               = ݍߚ ቀͳ − ೌೌቁ     (1a) 

 

where ߚ is an abrasion coefficient with dimension L
-1

. By introducing a cover factor parameter p, this 

equation can be rewritten as 

       

 

ܧ                                                                               = ሺͳݍߚ −  ሻ.     (1b)

 

This cover factor  is defined (Sklar and Dietrich, 2006) as the areal fraction of bedrock surface 

covered with alluvium and is given by 

                                                = {  
  ೌೌ… . .     Ͳ  ೌೌ  ͳ  ͳ….          ೌೌ > ͳ,       (2) 

where this fraction is calculated by averaging over a window larger than a characteristic macroscale of 

bedrock elevation variation. It is referred to this formulation for cover factor p as "capacity based" 

because Eq. (2) dictates that p is determined in terms of the ratio of sediment supply to its capacity 

value in the CSA model. 

In the above formulation, it is assumed that the gravel transport rate ݍୟ over a bedrock surface 

can be estimated by simply multiplying the capacity rate ݍୟୡ by the areal cover fraction p. While this 

is the simplest first-order assumption, it should be recognized that the roughness of the bedrock itself 

can change the flow resistance, leading to a relationship that is more complex than Eq. (1b) (Inoue et 

al., 2014; Johnson, 2014). 

Before introducing the relation of Sklar and Dietrich (2006) for abrasion co-efficient ߚ, it is 

of value to provide an interpretation for this parameter not originally given by Sklar and Dietrich 

(2004, 2006), but which plays a useful role in the analysis below. The abrasion coefficient has a 

physical interpretation in terms of Sternberg's law (Sternberg, 1875) for downstream diminution of 

grain size (Parker, 1991, 2008; Chatanantavet etal., 2010). The analysis leading to this interpretation 

is given in Appendix A; salient results are summarized here. Consider a clast of material that is of 

identical rock type to the bedrock being abraded. Sternberg's law is 

 

ܦ       = �௨݁−ௗܦ ,      (3) 
 

where D is gravel clast size, ܦ୳is the upstream value of D, � is downstream distance and ߙௗ is a 

diminution coefficient. If all diminution results from abrasion, ߙௗ is related to ߚ by 

ௗߙ                                                                               = ఉଷ.       (4a) 

In the case of constant ߚ, and therefore constant ߙௗ  the distance ܮ୦ୟ୪ for such a clast to halve in size 

is given by 

୦ୟ୪ܮ       = I୬ሺଶሻఈ .      (4b) 

 

This interpretation of abrasion coefficient ߚ in terms of diminution coefficient ߙௗ  allows for 

comparison of the experimental results of Sklar and Dietrich (2001) with values of ad previously 

obtained from abrasion mills (Parker, 2008: see Fig. 3-41 therein; Kodama, 1994). 

The relations of Sklar and Dietrich (2004, 2006) to compute ߚ and ݍ can be cast in the 

following form:                                                                        = Ͳ.Ͳͺ�ܴ����௧ଶ (߬∗߬∗ − ͳ)−ଵ/ଶ [ͳ − ߬∗ܴ௧ଶ]ଷ/ଶ            ,                    ሺͷaሻ 
      ܴ = జ√ோౝ,      (5b) 

 

ୟୡݍ                                                                    = ܽ√ܴ� ܦ ܦ ሺ߬∗ − ߬∗ሻೌ .    (5c) 
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In the above relations, D corresponds to the characteristic size of the gravel clasts that are effective in 

abrading the bedrock; � is the material density of the grains; R is their submerged specific gravity (~ 

1.65 for quartz); g is gravitational acceleration, ߬∗ is the dimensionless Shields number of the flow; ߬∗ 
is the threshold Shields number for the onset of significant bedload transport; ܽ and na denote, 

respectively, a relation-specific dimensionless coefficient and an exponent; ߭ is the fall (settling) 

velocity corresponding to grain size D, Y is the bedrock modulus of elasticity; �ଵ is the rock tensile 

strength; and k is a dimensionless coefficient of the order of 10
-6

. Equation (5c) corresponds to the 

bedload transport relation of Fernandez Luque and van Beek (1976) when ߙ = 5.7 and ݊= 1.5; Sklar 

and Dietrich (004, 006) used this relation with the assumed value ߬∗ == 0.03. (Zhang,et al,2015) 

The relations above define a 0-D formulation. It must be augmented with other parameters and 

relations, including channel width, relations for hydraulics, quantification of flow discharge or flow 

duration curve, etc., to allow application at the river reach scale. 

It is useful to cast Eq. (5a) in the form 

ߚ                                                           = ୰ୣߚ (�∗�∗−ଵ)−భ/మ[ଵ−�∗�మ]య/మቆ�౨∗�∗ −ଵቇ−భ/మ[ଵ−�౨∗�మ ]య/మ ,     (5d) 

 

where ߚ୰ୣ is a reference value of ߚ, either computed from known values of the parameters Y, k, �௧, ܴ 
etc., or estimated indirectly. 

 

2.2 Embedding of CSA into a model of bedrock surface evolution 

A relation for the evolution of bedrock surface elevation � is obtained by substituting the CSA 

geomorphic law for incision of Eq. (1b) into a simplified 1-D mass conservation Equation for bedrock 

material subjected to piston-style rock uplift or base level fall (Sklar and Dietrich, 2006): 

 

      
��್�௧ = ߭ −  (6a)      .ܧܫ

 

Here ݐ denotes time, ߭ denotes the relative vertical velocity between the rock underlying the channel 

(which is assumed to undergo no deformation) and the point at which base level is maintained, and I 

denotes a flood intermittency factor to account for the fact that only relatively rare flow events are 

likely to drive incision (Chatanantavet and Parker, 2009). Also, I is assumed to be a prescribed 

constant; a more generalized formulation for flow hydrograph is given in Sklar and Dietrich (2006) 

and DiBiase and Whipple (2011). In interpreting Eq. (6a), it should be noted that ߭ denotes a rock 

uplift rate (in the sense of England and Molnar, 1990) for the case of constant base level, or 

equivalently a rate of base level fall for rock undergoing neither uplift nor subsidence. Below the term 

"rock uplift" is used as shorthand for the relative vertical velocity between the rock and the point of 

base level maintenance. Substituting Eq. (1b) into Eq. (6a) yields (Sklar and Dietrich, 2006) 

 

      
∂�್∂୲ − ߭ − ሺͳݍߚܫ −  ሻ.    (6b)

 

2.3 Character of the CSA model: upstream waves of incision 

The MRSAA model (introduced below) has several new features as compared to CSA. These 

are best illustrated by first characterizing the mathematical nature of CSA in the context Of Eq. (6). 

Let 

      ܵ = − ∂�್∂�       (7) 

 

denote the streamwise bedrock-surface slope. Reducing Eq. (6b) with Eq. (7) the CSA model of Eq. 

(1) reveals itself as a nonlinear kinematic wave equation with a source term:  

 

      
∂�್∂௧ − ܿ ��್∂� = ߭,     (8a) 

 



6 

 

     ܿ = ଵఉೌሺଵ−ሻௌ್ .      (8b) 

 

Here ܿ  denotes the wave speed associated with bedrock incision. The form of Eq. (8a) dictates that 

disturbances in bedrock elevation always move upstream. It will be seen later that these disturbances 

can take the form of upstream -migrating knickpoints (e.g., Chatanantavet and Parker, 2009).Parker, 

2009). 

Any solution of Eqs. (8a) and (8b) subject to the cover relation of Eq. (2) requires 

specification of a flow model. In mountain streams, backwater effects are likely to be negligible (e.g., 

Parker, 2004). The normal (steady, uniform) flow assumption allows for simplification. Let Q denote 

water discharge during (morph dynamically active) flood flow taking place with intermittency I, and 

let H denote flood depth and g denote acceleration due to gravity. Momentum and mass balance take 

the forms 

      ߬ = ��H ܵ,      (9a) 

 

      � =  (9b)      ,ܪ ܤ ܷ

 

where ߬ is boundary shear stress at flood flow, U is the corresponding mean flow speed, B is channel 

width and � is water density. The dimensionless Shields number ߬∗ and dimensionless Chezy 

resistance coefficient ܥ� are defined as 

      ߬∗ = ఛ�ோౝ,                (10a) 

 

�ܥ       = √ఛ/�.               (10b) 

 

As shown in Parker (2004) and Chatanantavet and Parker (2009), reducing Eqs. (7), (9) and (10) 

yields the following relations for H and ߬∗: 
ܪ       = ቀ �మ�మమௌ್ቁଵ/ଷ,              (11a) 

                                                                             

                                                                          ߬∗ = ቀ �మ�మమቁଵ/ଷ ௌమ್/యோ .              (11b) 

 

A comparison of Eqs. (2), (5c) and (11b) indicates that even for constant values of o the parameters, 

the functional forms for ݍ and thus p are such that ܿ is in general a nonlinear function of ܵ =−��ܾ/��. 
 

2.4 Limitations of the CSA model 

The CSA model (Sklar and Dietrich, 2004, 2006) was a major advance in the analysis of 

bedrock incision due to abrasion because it (a) accounts for the effect of alluvial cover and tool 

availability on the incision rate through the term p (1 - p) in Eq. (1b) and (b) provides a physical basis 

for incision due to abrasion as gravel clasts collide with the bedrock surface. The CSA model been 

used, modified, adapted and extended by a number of researchers (Crosby et al., 2007; Lamb et al., 

2008; Chatanantavet and Parker, 2009; Turowski, 2009; Lague, 2010). 

The model does, however, have a significant limitation in that it specifically does not include 

either alluvial morpho-dynamics or the morpho-dynamics of transitions between bedrock and alluvial 

zones. Here this limitation is studied, and how to overcome it, in terms of the highly simplified 

configuration of a reach (HSR, highly simplified reach) with constant width; fixed, non-erodible 

banks; constant water discharge; and sediment input only from the upstream end. For simplicity, it is 

also neglected that abrasion of the gravel itself, so that grain size D is a specified constant. (This 

condition, while introduced arbitrarily here, can be physically interpreted in terms of clasts that are 

much more resistant to abrasion than the bedrock.) The means to relax these constraints is available 

(e.g., Chatanantavet et al., 2010; DiBiase and Whipple, 2011), and indeed many of them have been 

implemented in the SSTRIM model of Lague (2010). Such a relaxation, however, obscures the first-
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order physics underlying the rich patterns of interaction between completely and partially alluviated 

conditions illustrated herein. 

In the CSA model, the bedload transport rate ݍୟ is specified as a "supply". That is, the 

bedload transport rate is constrained so that it cannot change in the downstream direction, and is 

always equal to the bedload feed rate (supply) ݍୟ at the upstream end. When the feed rate ݍ  

increases, ݍ must increase simultaneously everywhere. That is, a change in bedload supply is felt 

instantaneously throughout the entire reach, regardless of its length. 

This behavior is illustrated in Fig. 2. The reach has length L. The gravel feed rate at � =  Ͳ 

follows a cyclic "sediment graph" (in analogy to a hydrograph) with period ܶ = ୦ܶ  +  ୪ܶ, in which 

the sediment feed rate has a constant high feed rate ݍୟ୦ for time ୦ܶ, and a subsequent constant low 

feed rate ݍୟ୪ for time ୪ܶ According to the CSA model, at � =  corresponding to the downstream ܮ 

end of the reach, the temporal variation in bedload transport rate must precisely reflect the feed rate. 

That is, the model was not designed to route sediment in the downstream direction. 

In a more realistic model, the effect of a change in bedload feed rate ݍୟ would gradually 

diffuse and propagate downstream, so that the bedload transport rate at the downstream end of the 

reach would show more gradual temporal variation. This effect is illustrated in Fig. 2. This same 

diffusion and propagation can be expected in the cover fraction p, which in general should vary in 

both � and ݐ. The change in cover fraction in turn should affect the incision rate as quantified in Eq. 

(1a). To capture this effect, however, Eq. (1b) must be coupled with an alluvial formulation that 

routes sediment downstream over the bedrock. 

A second limitation concerns alluviation of the bedrock surface. Consider a wave of sediment 

moving over this surface, as shown in Fig. 3. It is characterized that the vertical scale of the geometric 

roughness of the bedrock surface ( Fig. 1) In terms of a vertical macro-roughness ܮ୫୰. For simplicity, 

it is assumed that the bottom of the bedrock relief has a specific elevation �, an assumption that will 

be relaxed later in favor of a probabilistic formulation. The alluvial thickness above this basal 

elevation � represents an average value of local bed elevation over an appropriately defined window. 

It can be seen in Fig. 3 that the surface undergoes both partial (݊ < ܮ୫୰ and then complete (݊> ܮ୫୰) 
alluviation, only to be excavated later as the wave passes through. Bed elevation � is given as 

 

      � = � + � .      (12) 

 

Figure 3 shows that, in the case of complete alluviation, the elevation of the bed � can be arbitrarily 

higher than the elevation � of the bedrock, the difference between the two corresponding to the 

thickness �. 

 

Figure 2. Schematic diagram illustrating downstream modification of a sediment graph. At the upstream 

feed point (� = , left panel), the bedload transport rate ܉ takes the high feed value ܉� for time Th and 

the low feed value ܔ܉ time Tl], for a total cycle time of T = Th + 7]. At the downstream end (x = L, right 

panel), the discontinuous brown line represents the unaltered sedimentograph at the downstream end of 

the reach, assumed to have propagated instantaneously from the supply point, while the smoother red 

line represents the sedimentograph as modified by advective-diffusive effects.(Zhang,et al ,2015) 
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Figure 3. Schematic diagram illustrating the propagation of a wave of sediment over bedrock (orange line 

shifting to dashed orange line over time). Here �࢈ denotes the elevation of the bottom of the bedrock 

relief (black line), �ܚܕ denotes the bedrock macro-roughness thickness (dashed black line), �ࢇ denotes the 

thickness of the alluvial cover (which may be less than or greater than �ܚܕ) and � = ࢈� +  denotes .ࢇ�

the elevation of the top of the alluvium. 

 

The CSA model does not describe the variation in bed elevation � when the bed undergoes transitions 

between partial and complete alluviation; it simply infers that incision is shut down by the complete 

alluvial cover. 

The goal of this paper is the development and implementation of a model that overcomes 

these limitations by (a) capturing the spatiotemporal co-evolution of the sediment transport rate, 

alluvial cover thickness and bedrock incision rate, and (b) explicitly enabling spatiotemporally 

evolving transitions between bedrock-alluvial morphodynamics and purely alluvial morphodynamics. 

The form of the model presented here is simplified in terms of the HSR outlined above, including a 

constant-width channel and a single sediment source upstream. 

 

3 Macro-Roughness-based Saltation-Abrasion-Alluviation (MRSAA) formulation and its 

implications for channel evolution 
 

3.1   Formulation for alluvial sediment conservation and cover factor 

The geomorphic incision law of the MRSAA model is identical to that of CSA, i.e., Eq. (1b). The 

essential differences are contained in (a) a formulation for the cover factor  that differs from Eq. (2) 

and (b) the inclusion of alluvial morpho-dynamics in a way that tracks the spatiotemporal evolution of 

the bedload transport rate, and allows for smooth spatiotemporal transitions between the bedrock-

alluvial state and the purely alluvial state. 

The specific case considered here is one for which (a) the bedrock surface is rough in a 

hydraulic sense (as opposed to a hydraulically smooth or transitional surface; see Schlichting, 1979), 

and (b) the characteristic vertical scale of bedrock elevation fluctuation about a mean value based on 

an appropriately defined window, here denoted as the macro-roughness ܮ୫୰ of the bedrock, is large 

compared to the characteristic size of the clasts constituting the alluvium. The term "macro-

roughness" is used so as to clearly distinguish it from hydraulic roughness, which is specifically 

defined in terms the logarithmic velocity profile. Inoue et al. (2014) introduced the terms "clast-

rough" and "clast-smooth", the former referring to a bedrock surface roughness that is large compared 

to the characteristic size of the alluvium, and the latter referring to a bedrock surface macro-roughness 

that is small compared to the size of the alluvium. Here it is specifically considered the clast-rough 

case. 

The problem is formulated by considering a conservation equation for the alluvium, in 

standard Exner form, appropriately adapted to include below-capacity transport over a non-erodible 

surface. The first model of this kind is due To struiksma (1999) and further progress has been made 

by  
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Figure 4. Illustration of the statistical structure or local hypsometry of the bedrock surface topography 

(dark-grey line). Here z' denotes an elevation above some arbitrary datum (dark-red line) deep in the 

bedrock and ̌(z') is the probability (green line, marker) that a point at elevation z' is in water or alluvium 

rather than bedrock, i.e., above the local bedrock surface. The effective "bottom" of the bedrock relief is 

located at elevation �,   (e.g., 0.05); thě takes an appropriately selected low value ̌ where ,࢈ = 

effective "top" of the bedrock relief is located at elevation �, , where ̌ takes an appropriately selected 

high value ̌ (e.g., 0.95); and the macro-roughness �ܚܕ is given as �, − �,  The coordinate � = � − �,   is 

referenced to the effective “bottom” of the bedrock relief. 
 

to struiksma (1999) and further progress has been made by Parker et al.  (2009, 2013), Izumi and 

Yokokawa (2011), Izumi et al. (2012), Tanaka and Izumi (2013) and Zhang et al. (2013). These 

models are expressed in continuous form; Lague (2010) presents a discrete version based on a series 

of reaches of finite length that allows for generalization to a continuous form. 

None of the above models is specifically designed to handle the clast-rough case, in particular 

that shown in Fig. 1, where the elevation of the bedrock roughness has a random element. Here the 

clast-rough case is handled by first characterizing the statistical nature of the bedrock surface alone. 

As noted in Fig. 4, z' denotes elevation above an arbitrary datum deep in the bedrock, and ̌(z') 

denotes the probability that a point located at elevation z' is located in alluvium or water rather than 

bedrock. Conversely, 1 - ̌ denotes the probability that a point at elevation z' is in bedrock (rather than 

water or alluvium above). As seen on the right-hand side of the figure, ̌ሺ�′ሻ → Ͳ as z′ → −∞ (pure 

bedrock) and ̌ሺ�′ሻ → ͳ as �′ → −∞  This statistical structure function (a hypsometric curve for local 

bedrock topography) which is used here to characterize bedrock elevation fluctuations is analogous to 

that used in Parker et al. (2000) for alluvial beds. It should be noted that " −∞” is shorthand for "far 

below the bedrock surface" and " +∞”is shorthand for "far above the bedrock surface". It should also 

be emphasized that the tilde in the parameter ̌ indicates it is not a cover factor, but rather a statistical 

parameter referring to the bedrock relief itself. 

In such a statistical formulation, bedrock relief has neither a precise "bottom" nor a precise 

"top". Rather, the "bottom" and "top" of the bedrock topography, as well as the macro-roughness ܮ 
are here defined in a statistical sense. This can be done using moments or exceedance probabilities; 

here the latter is used. 

Let ̌ denote some low reference value of ̌ (e.g., ̌  = 0.05, or deep into the bedrock relief) 

and pp1 denote a corresponding high reference value of ̌ଵ = ͳ − ̌ = Ͳ.ͻͷ o�, or near the upper 

portion of the bedrock relief), and �′  and �ଵ′  denote the corresponding bed elevations. An effective 

"base" of the bedrock relief can be set at �′ , a macro-roughness height 

 

୫୰ܮ୫୰ defined asܮ  = �ଵ′ − �′      (13) 

 

and an effective "top" of the bedrock specified as �′  ୫୰. The clast-rough condition considered hereܮ + 

satisfies the constraint that ܮ୫୰/ܦ ب ͳ. 
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Figure 5. Schematic diagram for derivation of the Exner equation of sediment continuity over a bedrock 

surface (dark-grey line). As in Figs. (3) and (4), z is the elevation above the effective "bottom" of the 

bedrock relief, �ܚܕ is macro-roughness height, ࢈ is elevation at base of the bedrock and ࢇ is the 

thickness of alluvium (yellow fill). The diagram shows alluvium-water interfaces (blue line) that are at 

spatially constant elevations. This is for illustrative purposes only; the interfaces should instead be those 

that result from averaging over an appropriate spatial window, i.e., alluvial fill levels are expected to vary 

from one pocket in the bedrock relief to another. 

    

The problem can now be rephrased in terms of a vertical coordinate � with its origin located 

at the effective bottom of the bedrock topography: 

 

      � = �′ − �′ .      (14) 

 

As noted in Fig. 4, the statistical variable ̌(z) with shifted coordinate � now has the following 

properties: 

 

�ሺ̌                                                                = Ͳሻ = ,̌ �ሺ̌  = ୫୰ሻܮ =  ଵ.    (15)̌

 

Here it is defined the thickness of the alluvial cover ݊ as the elevation difference between the locally 

averaged top of the alluvium and the elevation � = 0. The cover fraction  associated with any alluvial 

thickness � relative to the macro-roughness height ܮ୫୰ is then given as 

 

(�mܮ/ܽ݊)      = �ሺ̌ = ݊ܽሻ      (16) 
 

3.2   Exner equation of alluvial sediment conservation over a bedrock surface  

The alluvial sediment is taken to have constant porosity ߣ as illustrated in Fig. 5, the volume of 

alluvial sediment per unit area between elevations z and z + ∆z is (1 - ߣ) ̌ (z) ∆z, and the 

corresponding volume bedload transport rate per unit width ݍ is estimated as ݍୟୡ,where again, 

according to Eq. (16), ̌ =  (�). 

For the case of sediment of constant density, the Exner equation for mass balance of alluvial 

sediment can be expressed as                                                                              ሺͳ − ሻߣ ݐ�� ∫ ೌ�݀̌
 = ܫ �ୟୡ݀ݍ� ,                                             ሺͳሻ 

where the factor ܫ accounts for the fact that morphodynam-ics are active only during floods. Reducing 

Eq. (17) using Leibniz's rule, 

     ሺͳ − ሻߣ �ೌ�௧ = ܫ− �ౙ�� .     (18) 

The above formulation for the conservation of alluvial sediment over a bed rock surface differs in one 
essential way from the earlier forms due to Struiksma(1999), Parkeretal. (2009, 2013), Izumi and 
Yokokawa (2011), Izumi et al. (2012), Tanaka and Izumi (2013) and Zhang et al. (2013). Specifically, 
in Eq. (18), the cover fraction p is present on the left-hand side of the equation as well as the right-
hand side. It is shown below that this feature dictates a strong nonlinearity in the speed of propagation 
of alluvial waves over a bedrock surface, such that wave speed increases with decreasing wave 
amplitude. This feature is specifically captured by means of Leibniz's rule, as implemented between 
Eqs. (17) and (18). 



11 

 

The combination of Eqs. (6b) and (18) delineates a formulation encompassing both mixed 
bedrock-alluvial rivers and alluvial rivers. 
 

3.3 Closure model for cover relation 

In the present formulation, the cover fraction  is free to vary in both � and ݐ, i.݁.,  = ሺ�,  It . ሻ. In order to complete the problem, however, it is necessary to specify a closure model forݐ
is characterized that the local variation in bedrock elevation in terms of the macro-roughness, i.e., the 

vertical length scale ܮ୫୰ of Fig. 4. Here it is sought that a formulation that averages over a window 

capturing a statistically relevant sample of this local variation. In general, it is assumed that a cover 

relation that characterizes to what extent the alluvial cover "drowns" the bedrock roughness elements. 

More specifically, the form is assumed 

      � = ݂ሺ߯ሻ,                (19a) 

 

                                                                                 ߯ = ೌm౨  Ͳ,                (19b) 

 

      ݂ሺ߯ = Ͳሻ̌Ͳ ,                (19c) 

 

      ݂ሺ߯ = Ͳሻ =  ͳ,                          (19d)̌

 

The precise details of the relation can be expected to vary from case to case, but the overall 

characteristics that hypothesize are illustrated in Fig. 6a-c. It is seen therein that  take the residual 

value  = .�Ͳ ሺ̌ �. ,Ͳ.Ͳͷሻa� ߯ = Ͳ,  increases monotonically to  = .�ͳ ሺ̌ �. ,Ͳ.ͻͷሻa� ߯ = ͳ, and then 

take the asymptotic value  → ͳ as ߯ becomes sufficiently large. The first of these conditions 

corresponds to a bedrock surface that is bare of alluvium except in deep pockets of the macro-

roughness elements, the second to a bedrock surface that is nearly completely alluviated but with 

some parts of the macro-roughness elements exposed, and the third to a bedrock surface that is deeply 

alleviated. 

Note that the cover relation of Fig. 6 and Eq. (19) is based on the macro-roughness height 

scale ܮ୫୰ rather than the transport capacity ݍୟୡ of Eq. (2). This is the motivation for referring to the 

new model of Zhang et al presented here as the Macro-Roughness-based Saltation-Abrasion-

Alluviation (MRSAA) model. 

In applying the MRSAA model to general cases, it is useful to delineate the simplest 

functional form for the closure relation for cover fraction that satisfies the constraints of Eq. (19) and 

Fig. 6. This relation is the piecewise-linear form 

                           = ݂ሺ߯ሻ = {  
̌   + ሺ̌ଵ − …    ሻ߯̌ Ͳ  ߯  ͳ − ଵ̌̌ − …                                    ͳ̌  ߯ > ͳ − ଵ̌̌ − ̌                                                   ሺʹͲaሻ 

 

Or rephrasing to emphasize the dependence of  on the thickness of alluvial cover ݊, 

 

     = ݂ሺ݊/ܮ୫୰ሻ = {  
̌   + ሺ̌ଵ − ሻ̌ ݊ܮ୫୰     … Ͳ  ݊ܮ୫୰  ͳ − ଵ̌̌ − ୫୰ܮ ͳ                                   … ݊̌ > ͳ − ଵ̌̌ − ̌                                                  ሺʹͲbሻ 

 

The above relation is illustrated in Fig. 7a with the sample evaluations 

 

̌                                                                     = Ͳ.Ͳͷ,     ̌ͳ = Ͳ.ͻͷ.     (21) 

 

Equations (20) and (21) are used in implementations of the MRSAA below. One way to develop 

forms of Eq. (19) that can show a wider variety of behavior than Eq. (20) would be through the  
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Figure 6. Illustration of the MRSAA model relation between areal fraction of alluvial cover of bedrock ሺ�ሻ (green curves) and � =  is the ࢘� is the thickness of alluvium (yellow fill) and ࢇ� where ,࢘�/ࢇ� 

macro-roughness height, for (a) low cover, (b) intermediate cover (c) complete alluviation above the top of 

the bedrock. The diagrams show alluvium-water interfaces at spatially constant elevations (blue lines). 

This is for illustrative purposes only: the interfaces should instead be those that result from averaging 

over an appropriate spatial window. 

 

performance of experiments similar to those of Chatanantavet and Parker (2008), but with a specific 

focus on various forms of macro-roughness that mimic those in the field. 

The form for the derivative of Eq. (20) with respect to ߯ , which is given below, will prove 

useful in succeeding analysis. 

    
ୢୢ� = { ͳ̌ Ͳ̌ …Ͳ −  ߯  ଵ−̌బ̌భ−̌బ Ͳ                            … ߯ >  ଵ−̌బ̌భ−̌బ     (22) 
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The model is specifically meant to apply to the case for which the characteristic size of the roughness 

elements is large compared to the size of clasts transported as bedload. With this in mind, it should be 

noted that in Fig. 6, no bed elevation variations are shown over parts of the bed that are covered with 

alluvium. This is done only for simplicity, and reflects the condition that in the clast-rough case 

considered here, grain size is small compared to macro-roughness height. Figure 6 also contains 

another simplification, in that all pockets are assumed to be filled to the same level by alluvium. 

While this condition is not likely to be true at the local scale, it is a reasonable first approximation 

when averaging over an appropriately defined window. 

The formulation presented here has an obvious limitation. Since it is a 1-D expression of 

sediment conservation over a bedrock surface, it cannot capture 2-D variation, which will result in a 

more complex pattern than that shown in Fig. 6, and in particular will provide more connectivity 

between adjacent pockets. This two-dimensionality is known to have an effect on the pattern of 

incision, as illustrated by Johnson and Whipple (2007). The extension of the formulation to the 2-D 

case represents a future goal; some relevant comments can be found in the "Discussion" section (Sect. 

8). 

Sections 3.4 and 3.5, immediately below focus, on the mathematical interpretation of the 

MRSAA problem in terms of diffusion and wave characteristics. The reader whose primary interest is 

in applications may jump directly to Sect. 3.6, with the two exceptions of Eqs. (27) and (28) in Sect. 

3.5. Equation (27) is a version of Eq. (6b) in which incisional morphodynamics are recast into a kine-

matic wave equation, revealing upstream-migrating waves of incision with wave speed ܿ. Equation 

(28) is a version of Eq. (18) in which alluvial morphodynamics are recast in terms of an advection-

diffusion equation, with downstream-migrating waves of alluviation with speed ܿ and alluvial 

diffusion with kinematic coefficient of diffusion ܭ 
 

3.4 Character of the alluvial part of the MRSAA problem: alluvial diffusion and downstream-

migrating waves of alluviation 

Equation (18) may be reduced to reveal the presence of an alluvial wave speed as follows. 

The derivative on the right-hand side of the equation is expanded using the chain rule, the derivative �/�� is reduced in accordance with the general closure form of Eq. (19), and both sides of Eq. (18) 

are then divided by p to yield 

     
��ೌ�௧ + ܿ ��ೌ�� = − ଵሺଵ−�ሻ ܫ �ೌ�� ,                         (23a) 

where 

     ܿ = ூଵ−� ೌ ୢୢ�.                            (23b) 

 

The left-hand side of Eq. (23a) thus takes a kinematic wave form, such that ܿ  is the wave 

speed of downstream-directed alluviation. 

It is important to realize that alluvial wave speed ca is a nonlinear function of alluvial 

thickness �.Using the example functions of Eqs. (20) and (22), the speed ܿୟ୧ of an alluvial wave of 

infinitesimal height �= 0 is given from Eq. (23b) as 

                                                                                    ܿ = ூଵ−� ೌ ሺ̌ଵ−̌బሻ̌బ              (24a) 

 

The ratio ܿୟ/ܿୟ୧ of the wave speed ܿୟat height �to the corresponding value for an infinitesimal wave 

is then found to be                                                                                 ܿܿ� = ሺ̌ͳ − ̌ሻ̌ ͳ d݂d� .                                                ሺʹͶbሻ 
 

In Fig. 7b, the ratio ܿୟ/ܿୟ୧ is plotted against � =  in accordance with the ݎ݉ܮ/ܽ� 

specifications of Eqs. (20), (21), and (22). It is seen therein that alluvial wave speed takes its 

maximum value for the limit � →  Ͳ, and decreases to a vanishing value as the bed becomes 

completely alluviated (�/ܮ = 1.056). That is, waves of alluvium run fastest over a nearly bare bed, 

and wave-like behavior ceases to exist under conditions of complete alluviation. This latter result is in 

accordance with Lisle et al. (2001) and Cui et al. (2003a, b). 
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Figure 7. (a) Simplest modified form the MRSAA cover function (green curve) satisfying the conditions 

p(0) = r, p(1) = 1 - r and p(∞) = 1, where in this case r = 0.05. The parameter on the vertical axis p(�) 

denotes the cover fraction, and the parameter on the horizontal axis is � =  is the ࢇ� where࢘�/ࢇ�

thickness of alluvium and �࢘ is the macro-roughness height. (b) Plot of the ratio of alluvial wave speed ࢇࢉሺ�ሻ at ࢇ finite value of �= �࢘�/ࢇ to the corresponding speed ࢇࢉ�for an alluvial wave of infinitesimal 

height versus �. The plot shows that alluvial wave speed declines with increasing alluvial thickness, and 

that it vanishes under complete alluviation. 

 

It is of interest to inquire as to how the model would behave if the clast-rough condition, 

i.e.,ܮ/ܦ ب ͳ, , were not satisfied here. The limiting case of clast-smooth conditions would 

correspond to a probability distribution ̌ሺ�′ሻ in Fig. 4 that obeys a step function; ̌ሺ�′ሻ would be 

vanishing up to a smooth, horizontal bedrock surface, and would take the value unity above it. 

Consequently, the cover fraction p would converge precisely to zero as ݊  →  Ͳ,, thus resulting, 

according to Eq. (23b), in an infinite speed of propagation of an alluvial wave of infinitesimal height. 

This is not entirely unrealistic: the physical realization would consist of clasts rolling rapidly over a 

smooth bed with no alluviation (Inoue et al., 2014). The presence of such a singularity, would, 

however, preclude the modeling of the migration of a pulse of alluvium of finite extent over the 

otherwise bare bed schematized in Fig. 3. In the present clast-rough formulation, the presence of deep 

pockets within the bedrock relief where alluvium can be stored without transport ensures that the 

wave speed of alluvium never displays a singularity. 

The form of Eq. (23a) can be further clarified by rewriting it as 

 

     
��ೌ�௧ + ܿ ��ೌ�� − ��� ቀܭ ��ೌ�� ቁ = ��� ቀܭ ��ೌ�� ቁ,   (25) 

Where 

ܭ                                                                         = ூೌሺଵ−�ሻௌ.                (26a) 

 

     ܵ = − ���� = − ��್�� − ��ೌ�� .               (26b) 

 

In the above relation, ܭ has the physical meaning of a kinematic diffusivity. In general, ݍ ,   are nonlinear functions of ܵ. The alluvial problem thus takes the form of a nonlinearܭ /ܵ and thusݍ

advective-diffusive problem with a source term arising from a bedrock term. 
 

3.5   Full MRSAA formulation: alluvial diffusion, upstream-migration waves of incision, - down 

stream migrating waves of alluviation 

 

The full MRSAA model consists of the kinematic wave equation with a source term Eq. (8a) for the 

bedrock part, Eqs. (23b), (25) and (26) for the alluvial part, and the linkage between the two embodied 

in the cover relation of Eq. (19). Restating these equations for emphasis, Eq. (6a) can be recast as 

 

      
��್�௧ − ܿ ��್�� = ߭,               (27a) 
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      ܿ = ሺͳݍߚܫ − ሻ ቀ− ��್�� ቁ−ଵ,             (27b) 

 

where ܿ denotes the speed of upstream-migrating incisional waves. Equation (18) can be cast in 

conjunction with Eqs. (19) and (20) as 

 

                                                            
��್�௧ − ܿ ��ೌ�� − ��� ቀܭ ��ೌ�� ቁ = ��� ቀܭ ��ೌ�� ቁ.              (28a) 

 

                                                                     ܿ = ூଵ−� ೌm౨ ୢୢ�.                (28b) 

   

      
ௗௗ� = ୢௗሺ�/m౨ሻ,                (28c) 

 

ܭ                                                                 = ሺͳܫ − ݍሻߣ [− ��� ሺ� + �ሻ]−ଵ                             (28d) 

 

and  

                                                    = ݂ሺ�ሻ = Ͳ̌} + ሺ̌ͳ − …    Ͳሻ߯̌   Ͳ   ߯  ଵ−̌̌ଵ−̌ ͳ… .߯ > ଵ−̌̌ଵ−̌ ,                    (29) 

 

where ܥ denotes the speed of downstream-migrating alluvial waves, and ܭ is the kinematic 

diffusivity of alluvium. In this way, upstream-migrating incisional waves are combined with 

downstream-migrating alluvial waves and alluvial diffusion. 

In MRSAA, then, the spatiotemporal variation in the cover fraction ሺ�,  ሻ is specifically tiedݐ

to the corresponding variation in ݎ through Eq. (19), e.g., the specific example of Eq. (29) above. 

This variation then affects incision through Eq. (27). Consider the simplified case of a wave of 

alluvium of finite extent illustrated in Fig. 3. There is no incision upstream of the wave because  = Ͳ and there is no sediment in motion over the bed. At the peak of the wave, � >  ;1 =  ୫୰ soܮ

the bed is entirely covered with sediment, and again there is no incision. Incision can only occur on 

the rising and falling parts of the wave, where bedrock is partially exposed and sediment is in motion 

over it, i.e., 0 < 1 > . It can thus be expected that the spatiotemporal variation in cover thickness �  will affect the evolution of the long profile of an incising river that undergoes transitions between 

alluvial and mixed bedrock-alluvial states. 

 

3.6 Amendment of the flow component of the MRSAA model 
The flow model, and in particular Eqs. (9a) and (11), must be modified to include the alluvial 

formulation, so that bedrock slope ܵ is replaced with slope ܵ of the top of the bed, wherein which the 

diffusivity a is a function of  

 

     ܵ = − ���� = ܵ + ܵ.                (30a) 

 

     ܵ = − ��್�� .                 (30b) 

 

     ܵ = ��ೌ�� .                 (30c) 

 

Thus Eqs. (9a) and (11a, 11b0 are amended 

 

     ߬ =  (31)       ܵܪ��

and  
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ܪ      = ቀ ொమ�మమௌቁଵ/ଷ,      (32) 

 

     ߬∗ = ቀ ொమ�మమቁଵ/ଷ ௌమ/యோ                 (32b) 

 

The purely alluvial case, ie  = ͳ, ݂݀/݀߯ = Ͳ and � = cons� < � in Eq (28), results in the purely 

diffusional relation 

     
��ೌ�௧ = ��� ቀܭ ��ೌ�� ቁ      (33) 

 

In which the diffusivity ܭ is a function of ܵ = −�� ��⁄ . 
 

3.7 How the governing equations connect to each other 

In the numerical analysis below, the actual equations used to solve for morphodynamic evolution are 

not those of Sects. 3.4 and 3.5, but rather the primitive forms presented earlier. The unknowns to be 

solved are � , �,�, �, ,∗߬ ,ୟୡݍ ܵ, ܵ and ܵ. These nine parameters are connected to each other via nine 

equation, i.e., Eqs (5c), (6b), (12), (18), (20), (30a,b,c) and (32b). 

 

3.8 Equivalence of the MRSAA and CSA models at steady state 

In the restricted case of the highly simplified reach (HSR) configuration constrained by (a) 

temporally constant, below-capacity sediment feed (supply) rate ݍୟ,(b) bedload transport rate ݍ  everywhere equal to the feed rate ݍୟ,, and (c) a steady-state balance between incision and rock 

uplift, �, p and ܵ become constant and Sa vanishes, so that Eq. (28) is satisfied exactly. Equation 

(18) integrates to give 

      � = ౙ,      (34) 

  

So that � can then be back-calculated from Eq. (20). In this case, then, the MRSAA model reduces to 

Eqs. (27) and (34), i.e., the CSA model. 

 

4 The below-capacity steady-state case common to the CSA and MRSAA models 

The steady-state form of Eq. (6) under below-capacity conditions (p < 1) can be expressed with the 

aid of Eq. (2) in the form 

௦௦       = ͳ − ߮,                (35a) 

 

      ߮ = జூఉ��,                (35b)  

 

ୟୡୱୱݍ       = ��,                (35c) 
 

where �௦௦, ߚ௦௦ and ݍୟୡୱୱ denote steady-state values of p, ߚand ݍ, respectively. Equations (35a)-

(35c) describe a balance between the incision rate and relative vertical rock velocity (e.g., constant 

rock uplift rate at constant base level or constant rock elevation with constant rate of base level fall). 

CSA and MRSAA yield the same solution for this case, which must be characterized before showing 

how the models differ. 

Equation (35a) has an interesting character. When the value of the dimensionless number ߮ 

exceeds unity, p falls below zero and no steady-state solution exists. Equation (35b) reveals that  can 

be interpreted as a dimension-less rock uplift rate. Thus when the rock uplift rate is sufficiently large 

for ߮ to exceed unity, incision cannot keep pace with rock uplift. The model thus implicitly predicts 

the formation of a hanging valley. This issue was earlier discussed in Crosby et al. (2007). 

In solving for this steady state, and in subsequent calculations, it is used that the bedload 

transport relation of Wong and Parker (2006a), a development and correction of the semi-empirical 

relation of Meyer-Peter and Muller (1948), rather than the similar formulation of Fernandez Luque 

and van Beek (1976); in the case of the former, ߙa = 4, na = 1.5 and ߬∗= 0.0495. Two cases are 
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considered: one for which ߚ௦௦ =  .௦௦ is computed from Eq. (5d)ߚ ୰ୣ is specified, andߚ is a specified constant, and one for which only a reference valueߚ

In the case of a specified constant abrasion coefficient ߚ, specification of ߭,  ୟ allowݍ and ܫ

computation of ߮, ௦௦  and ݍୟୡୱୱ from Eqs. (35a)-(35c). Further specification of R (here chosen to be 

1.65, the standard value for quartz) and D allows the steady-state Shields number ߬௦௦∗ to be computed 

from Eq. (5c). Steady-state bedrock slope ܵୠୱୱ can then be computed from Eq. (11b) upon 

specification of flood discharge �, Chezy resistance coefficient Cz and channel width B. In the case of 

jss calculated according to Eq. (5d) using a specified reference value ߚ୰ୣ, the problem can again be 

solved with Eqs. (35), (5c) and (11b), but the solution is implicit. 

Calculations are performed for conditions loosely based on (a) field estimates for a reach of 

the bedrock Wainganga River near  Balaghat , India (Fig. 1), for which bed slope S is about 0.002 and 

channel width is about 100 m and (b) estimates using relations in Parker et al. (2007) for alluvial 

gravel-bed rivers with similar slopes, and reasonable choices for otherwise poorly constrained 

parameters. The input parameters, Cz = 10, Q = 300 m
3
 s

-1
, B = 100 m, are loosely justified in terms of 

bankfull characteristics of alluvial gravel-bed rivers of the same slope (Parker et al., 2007; Wilkerson 

and Parker, 2011) as shown in Fig. 8a and b. The value D = 20 mm represents a reasonable 

characteristic size of the substrate (and thus the bedload) for gravel-bed rivers; a typical size for 

surface pavement is 2 to 3 times this (e.g., Parker et al., 1982). Flood intermittency I is estimated at 

0.05, i.e., 18 days per year, and thus a reasonable estimate for a river subject to frequent heavy storm 

rainfall. Alluvial porosity is 0.35 = ߣ. 

Two sediment feed rates were considered. The high feed rate was set at 3.5 × 10
5
tyr

-1
, which 

corresponds to the following steady-state parameters at capacity conditions: Shields number ߬∗ = 

0.12, depth H = 1.5 m, steady-state alluvial bed slope ܵୟୱୱ = 0.0026 and Froude number ܨ= 0.51, 

where 

 
Figure 8. (a) Chezy resistance coefficient Cz plotted against bed slope S for alluvial rivers. Also included 

are estimated values for the Wainganga River, India. (b) Bankfull width �܊ versus bankfull discharge �܊ for alluvial rivers. Also included are estimates for bank-to-bank width and characteristic flood 

discharge in the Wainganga River,  India . The ranges for characteristic bed material size of the alluvial 

rivers are denoted in the legends. 
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ܨ       = �ு√ு.      (36) 

The low feed rate was set at 3.5 × 10
4
 tyr

-1
, corresponding to the following parameters at capacity 

conditions: Shields number ߬∗= 0.064, depth H = 2.1m, steady-state alluvial bed slope ܵ௦௦ = 0.0010 

and Froude number ܨ = 0.32. 

The value ߚ௦௦= 0.05 km
—1

 was used for the case of a constant steady-state abrasion 

coefficient. This corresponds to a value of ߙௗof 0.017km
—

 
1
, which falls in the middle of the range 

measured by Kodama (1994) for chert, quartz and an-desite (see Fig. 3-41 of Parker, 2008). For the 

case of a variable abrasion coefficient, Eq. (1a) was used with ߚ୰ୣ set to 0.05 km
—

 
1
 and ߬୰ୣ∗  set to 

0.12, i.e., the value for the highfeed rate. This value of ߬୰ୣ∗  is about 2.5 times the threshold value of 

Wong and Parker (2006a). 

For the high feed, predicted relations for a steady-state abrasion coefficient ߚ௦௦ versus rock 

uplift rate ߭ are shown in Fig. 9a; the corresponding predictions for ܵ௦௦ versus ߭ are shown in Fig. 

9b; the corresponding predictions for ௦௦  and ߮ are shown in Fig. 9c. Both the cases of constant and 

variable ߚ௦௦ are shown. There are five notable aspects of these figures: (a) in Fig. 9a, the predictions 

for variable ߚ௦௦ are very similar to the case of constant, specified ߚ௦௦, and indeed are nearly identical 

for u < 3.3mmyr
—

 
1
 (corresponding to <p < 0.05 in Fig. 9c). (b) In Fig. 9b and c, the predictions for ܵୠୱୱ ௦௦ and ߮ for variable ߚ௦௦ are again nearly identical to those for constant ߚ௦௦, and again 

essentially independent of ߭ for ߭ < 3.3 mmyr
—

 
1
. (c) In Fig. 9c, ௦௦ is only slightly below unity (i.e., ௦௦ > 0.95), and <p < 0.05 for u < 3.3 mmyr

—
 
1
). (d) For ߭ > 3.3 mmyr

—
 
1
, the predictions for ܵୠୱୱ and ௦௦ become dependent on u, such that ܵ௦௦ increases, and ௦௦ decreases, with increasing ߭. The values 

for constant ߚ௦௦diverge from those for variable ߚ௦௦, but are nevertheless close to each other up to 

some limiting value. (e) This limiting value corresponds to <p = 1 and thus ௦௦ = 0 from Eq. (35a); 

larger values of < lead to hanging valley formation. Here < = 1 for the very high values ߭ = 65 mmyr
—

 
1
 for constant ߚ௦௦and u = 30 mm for variable ߚ௦௦. 

These results require interpretation. It can be seen from Eqs. (35a-35c) that when ߭/(I 

߮ = (ݍ௦௦ߚ/ ا ͳ,, p becomes nearly equal to unity (very little exposed bedrock), in which case ݍis 

constrained to be only slightly smaller than ݍ. From Eqs. (5c) and (11), then, ܵୠୱୱ is only slightly 

above the steady-state alluvial bed slope ܵ௦௦. Note that the steady-state bedrock slope decouples from 

rock uplift rate under these conditions: the predictions for ߭ = 0.2mmyr
—

 
1
 are nearly identical to this 

for ߭ = 3.3 mmyr
—

 
1
. This behavior is a specific consequence of the condition <p 1 corresponding to a 

low ratio of uplift rate to reference incision rate ܧ୰ୣ =  ୟThey imply a wide range of conditionsݍ௦௦ߚܫ

for which (a) very little bedrock is exposed, and (b) bedrock slope is independent of uplift rate. 

The results for the low feed rate are very similar. The values for variable steady-state abrasion 

coefficient ߚ௦௦ differ from the constant value ߚ௦௦in Fig. 10a, but this is because the constant value ߚ௦௦= 0.05 was set based on the high feed rate. The results in Fig. 10b and ܿ are qualitatively the same 

for Fig. 9b and c; the uplift rate below which <߮ < 0.05 is ߭ < 0.33 mmyr
—

 
1
 for the case of constant ߚ௦௦, and ߭ < 0.73 mmyr

-1
 for the case of variable ߚ௦௦ The critical value of u beyond which a hanging 

valley forms is ߭ > 6.8mmyr
-1

 for constant ߚ௦௦ and ߭ > 7.1 mmyr
-1

 for variable ߚ௦௦. 
The lack of dependence of steady-state bedrock slope ܵ௦௦ on rock uplift rate u below a 

threshold value for the steady-state solutions of the CSA model (and thus the MRSAA model as well) 

is in stark contrast to earlier work for which the incision rate E is assumed to have the following 

dependence on slope ܵ and drainage area A ("slope-area" formulation, Howard and Kerby, 1983): 

 

ܧ      =  ,       (37)ܣܵܭ

 

where A denotes drainage area, n and m are specified exponents, and K is a constant assumed to 

decrease with increasing rock hardness. 

In order to compare the steady-state predictions of the slope-area relation in Eq. (37) for 

constant ߭ with CSA, drainage area A must be taken to be a constant value ܣ so as to correspond to 

the HSR configuration used here. The steady-state slope ܵ௦௦ corresponding to a balance between 

incision and rock uplift is found from Eq. (37) to be 
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Figure 9. Variation at steady state (black curves) of (a) abrasion coefficient �࢙࢙, (b) bedrock slope �࢙࢙࢈ 
and (c) cover fraction ࢙࢙ and parameter q> on rock uplift or base lowering rate u, for a high bedload feed 

rate of 3.5 × 10
5
 tyr

—1
. The cases of constant, specified �࢙࢙ and �࢙࢙࢈ varying according to Eq. (34) are 

shown as blue curves. The vertical dashed lines denote the incipient conditions for the formation of a 

hanging valley. The predictions are the same for the CSA and MRSAA models. 
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Figure 10. Variation at steady state (black curves) of (a) abrasion coefficient �࢙࢙ (b) bedrock slope �࢙࢙࢈ 
and (c) cover fraction ࢙࢙ and parameter p with rock uplift or base lowering rate u, for a low bedload feed 

rate of 3.5 × 10
4
tyr

-1
. The cases of constant, specified �࢙࢙  and �࢙࢙࢈ varying according to Eq. (34) are 

shown as blue curves. The vertical dashed lines denote the incipient conditions for the formation of a 

hanging valley. The predictions are the same for the CSA and MRSAA models. 
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                                                              ܵୠୱୱ = జభ/భ/బ/.       (38) 

 

The issue as to the values of ݉ and ݊ has been considered by many researchers, including Whipple 

and Tucker (2002) and Lague (2014). 

In their Table 1, Whipple and Tucker (2002) quote a range of values of ݊, but their most 

quoted value is ݊ =  ʹ. The results are compared for CSA for ܵୠୱୱ with the predictions from Eq. (38) 

with ݊ =  ʹ by normalizing against a reference value ܵୠ୰ୣ that corresponds to a reference rock uplift 

rate ߭୰ୣ of 0.2 mmyr
-1

. Equation (38) yields 

     
ௌౘ౩౩ௌౘ౨ = ቀ జజ౨ቁଵ/ଶ.      (39) 

 

In Fig. 11, Eq. (39) is compared against the CSA predictions of Figs. 9b and 10b (high and 

low feed rate, respectively) for both constant and variable ߚ௦௦ .In order to keep the plot within a 

realistic range, only values of u between 0.2 and 10 mmyr
-1

 (the upper limit corresponding to Dadson 

et al., 2003) have been used in the CSA results. The remarkable in-sensitivity of the CSA predictions 

for steady-state slope ܵୠୱୱ on rock uplift rate is readily apparent from the figure. 

One more difference between the CSA and slope-area formulations is worth noting. If the 

slope-area relation is installed into Eq. (6) in place of CSA, it is readily shown that bedrock slope 

gradually relaxes to zero in the absence of rock uplift. CSA does not obey the same behavior under 

the constraint of constant sediment feed rate: Figs. 9b and 10b indicate that bedrock slope converges 

to a constant, nonzero value as rock uplift declines to zero. This is not necessarily a shortcoming of 

CSA; the sediment feed rate can be expected to decline as relief declines. 

 

5 Boundary conditions and parameters for numerical solutions of the MRSAA model 
Having conducted a fairly thorough analysis of the steady state common to the CSA and 

MRSAA models, it is now appropriate to move onto examples of behavior that can be captured by the 

MRSAA model, but are not captured by models that assume a relation for cover based on the ratio of 

sediment supply to capacity transport rate, i.e., Eq. (2). Before doing so, however, it is necessary to 

delineate the boundary conditions and other assumptions used in the MRSAA model. 

Let ܮ denote the length of the reach. Equation (27a) indicates the formulation for bedrock 

incision is first order in � and so requires only one boundary condition. The example considered here 

is that of a downstream bedrock elevation, i.e., base level, set to zero: 

 

      �ୠ|�= = Ͳ.                   (41) 

  

According to Eq. (18), or alternatively Eq. (28a), the alluvial formulation is second order in � and thus 

requires two boundary conditions. The following boundary condition applies at the upstream end of 

the reach, where ݍୟሺݐሻ denotes a feed rate that may vary in time, 

|�=ݍ                                                                              =  ሻ.      (42)ݐୟሺݍ

At the downstream end, a free boundary condition is applied for � ୫୰ܮ < ͳ,⁄  and a fixed boundary 

condition is applied for � ୫୰ܮ  ͳ,⁄ as follows: 

                   [ሺͳ − ሻߣ ��ೌ�௧ + ܫ  �ೌௗ� ]�= = Ͳ               … i� [ �ೌm౨]�=                     < ͳ.                            ሺͶʹaሻ
                                                                �ୠ ∕�== ܮ                                   … i� [ �ೌm౨]�=                      ͳ.                              ሺͶʹbሻ 

 

Here, Eq. (42a) specifies a free boundary in the case of partial alluviation, thus allowing below-

capacity sediment waves to exit the reach. Equation (42b), on the other hand, fixes the maximum 

downstream elevation at � = � =  .୫୰ܮ
In order to illustrate the essential features of the new formulation of the MRSAA model for 

the morphodynamics of mixed bedrock-alluvial rivers, it is useful to consider the most simplified case 

that illustrates its expanded capabilities compared to the CSA model. Here the HSR simplification is  
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Figure 11. Normalized steady-state bedrock slope �ܛܛ܊ ⁄܍ܚ܊� versus normalized rock uplift rate �as 

predicted by the CSA model for a low feed rate (orange-brown curves) and a high feed rate (black curve 

and dashed red curve), and for constant and variable abrasion coefficient. The results are the same for 

the MRSAA model. Also shown is the prediction of a model for which the incision rate is specified in 

terms of bedrock slope and upstream drainage area (green curve). Note that the predictions for steady-

state bedrock slope of the CSA model are insensitive to the rock uplift rate over a wide range. 

 

implemented. In addition, based on the results of the previous section, it approximates ߚ௦௦ as a 

prescribed constant. Finally, it is assumed that the clasts of the abrading bedload are sufficiently hard 

compared to the bedrock so that grain size D can be approximated as a constant. These constraints are 

easily relaxed. 

In the numerical solution of the differential Eqs. (6b) and (18), spatial derivatives have been 

computed using an upwinding scheme for short timescales (so as to capture downstream-migrating 

alluvial waves) and a downwinding scheme for long timescales (so as to capture upstream-migrating 

incisional waves). Time derivatives have been computed using the Euler step method. 

 

6 Sediment waves over a fixed bed: stripping and emplacement of alluvial layer and advection-

diffusion of a sediment pulse 

Three numerical solutions of the MRSAA model are studied here: (a) stripping of an alluvial 

cover to bare bed, emplacement of an alluvial cover over a bare bed andadvection-diffusion of an 

alluvial pulse over a bare bed. Reach length L is 20 km. As the time for alluvial response is short 

compared to incisional response, ߚ௦௦  and ߭ are set equal to zero for these calculations. In addition, 

flood intermittency I is set to unity so as to illustrate the migration from the feed point to the end of 

the reach under the condition of continuous flow. The macro-roughness ܮ୫୰ is set to 1 m based on 

observation of the Wainganga River near Balaghat , India. The values for Cz, Q, B, D and λ are the 

same as in Sect. 5, i.e., Cz = 10, Q = 300 m3 s −1 , B = 100 m, D = 20 mm and λ = 0.35. Bedrock 
slope Sb, which is constant due to the absence of abrasion, is set to 0.004. The above numbers 

combined with Eqs (5c) (using the constants of the formulation of Wong and Parker, 2006a), (32a) 

and (32b) yield the following values: depth H = 1.32 m, Froude number Fr = 0.63, Shields number ߬∗= 0.016 and capacity bedload transport rate ݍ = 0.0017 m2 s −1 . 
None of these three cases can be treated using models that assume a relation for cover based 

on the ratio of sediment supply to capacity transport rate, i.e., Eq. (2). They thus illustrate capabilities 

unique to MRSAA. 
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6.1Alluvial stripping 
The case of stripping of an initial alluvial layer to bare bedrock is considered here. In this 

simulation, the bedload feed rate ݍୟ = Ͳ and the initial thickness of alluvial cover ݊ is set to 0.8 m, 

i.e., 80% of the macro-roughness length ܮ୫୰ To drive stripping of the alluvial layer, the feed rate is 

set equal to zero. Figure 12a shows how the alluvial cover is progressively stripped off from upstream 

to downstream as a wave of alluvial rarification migrates downstream. The alluvial layer is 

completely removed (except for residual sediment in deep pockets, as specified by Eq. 21) after a 

little more than 0.12 years. 

Of interest in Fig. 12a is the fact that the wave of stripping maintains constant form in spite of 

the diffusive term in Eq. (28a) which should cause the wave to spread. The reason the wave does not  

spread is the nonlinearity of the wave speed ܿ in Eq. (28b): since p enters into the denominator on 

the right-hand side of the equation, wave speed is seen to increase as p decreases, and thus ݊ 

decreases. As a result, the lower portion of the wave tends to migrate faster than the higher portion, 

sharpening the wave and opposing diffusion. 

 

6.2. Emplacement of an alluvial layer over an initially bare bed 

In this simulation, the initial thickness of alluvium ݊ is set to zero and the sediment feed rate 

is set to 0.0013 m
2
 s

-1
, i.e., 80 % of the capacity value. The result of the calculation is shown in Fig. 

12b. Here nonlinear advection and diffusion act in concert to cause the wave of alluviation to spread. 

The steady-state thickness of alluvium is 0.83 m; by 0.1 years it has been emplaced only down to 

about 5 km from the source. This steady-state condition, and only this condition, corresponds to a 

convergence of results from MRSAA and CSA. 

 

6.3. Propagation of a pulse of alluvium over an initially bare bed 
In this example the initial bed is bare of sediment. The sediment feed rate is set equal to 0.0012 m

2
 

s
-1

, i.e., 70% of the capacity value for 0.05 years from the start of the run, and then dropped to zero for 

the rest of the run. Figure 12c shows the propagation of a damped alluvial pulse through the reach, 

with complete evacuation of the pulse in a little more than0.15 years. Nonlinear advection acts against 

diffusion to suppress the spreading of the upstream side of the pulse, but advection acts together with 

diffusion to drive spreading of the downstream side of the pulse. 
 

7. Comparison of evolution to uplift-driven steady state for the CSA and MRSAA models 

Here it is considered three cases of channel profile evolution to steady state that include both 

rock uplift and incision. In the first case, the initial bedrock slope is set to a value below the steady-

state value, and the sediment feed rate is set to a value that is well above the steady-state value for the 

initial bedrock slope, causing early-stage massive alluviation. The configuration for the second case is 

a simplified version of a graben with a horst upstream and a horst downstream. The configuration for 

the third case is such that there is an alluviated river mouth downstream and a bedrock-alluvial 

transition upstream. In all cases, MRSAA predicts evolution that cannot be predicted by models that 

assume a relation for cover based on the ratio of sediment supply to capacity transport rate, i.e., Eq. 

(2). 

 

7.1   Evolution of bedrock profile with early-stage massive alluviation 

Here it is set Q ,  B, Cz, D and ߣ to the same values as Sect. 6. The reach length ܮ is 20 km, 

the flood intermittency I is set to 0.05, macro-roughness ܮ୫୰is set to 1 m, initial alluvial thickness �|௧== = 0.5 m, downstream bed elevation �|�= = Ͳ and the abrasion coefficient ߚ௦௦ is 0.05km
-1

. 

The initial bed slope is 0.004. The feed rate is set to twice the capacity rate for this slope, i.e., ݍୟ = 

0.0033 m
2
 s

-1
. The uplift rate is set to the very large value of 5 mmyr

-1
. It should be noted, however, 

that as shown in Fig. 10b, the steady-state bedrock slope for this feed rate is independent of the uplift 

rate for ߭ < 5 myr
-1

. This is because the steady-state value of ߮ is 0.019, i.e., ߮ < 1. 

       The results for the CSA model are shown in Fig. 13a. The bed slope evolves from the initial value 

of 0.004 to a final steady-state value of 0.0068. Evolution is achieved solely by means of an upstream-

migrating knickpoint. Only the first 4000 years of evolution are shown in the figure. 
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Figure 12. MRSAA model solutions for (a) stripping of an alluvial layer to bare bedrock, (b) emplacement 

of an alluvial cover over initially bare bedrock and (c) evolution of a pulse of sediment over bare bedrock. 

Numerical simulations of the evolution of alluvial thickness �ሺ�,  ሻover streamwise distance x are shown࢚

for a series of time steps t as indicated in the legends. (Zhang,et al,2015) 
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Figure 13. Progression to steady state after an impulsive increase in sediment supply: (a) CSA model; (b) 

MRSAA model, early stage; and (c) MRSAA model, late stage. Note the knickpoints ��ሺ࢚ሻin bedrock in 

(a) and (b) and hidden in a migrating alluvial-bedrock transition in (c). Here � denotes elevation of the 

top bed surface, ࢈ denotes elevation of the base of bedrock relief, and � denotes streamwise distance. 

The retreating alluvial wedge is shaded in (c) for emphasis.(Zhang,et al,2015) 

 

Figure 13b shows the results of the first 400 years of the calculation with MRSAA. By 100 

years, the bed is completely alluviated, and by 400 years, the thickness of the alluvial layer at the 

upstream end of the reach is 52 m. This massive alluviation is, unsurprisingly, not predicted by CSA, 

which was designed to treat incision only. Figure 13c shows the results of the first 4000 years of 

evolution. The upstream-migrating knickpoint takes the same form as CSA, but it is nearly completely 
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hidden by the alluvial layer. The knick-point gradually migrates upstream, driving the completely 

alluviated layer out of the domain, but this process is not complete by 4000 years. A comparison of 

Fig. 13a and c show that a knickpoint that is exposed in CSA is hidden in MRSAA. Models that 

assume a relation for cover based on the ratio of sediment supply to capacity transport rate cannot 

predict the presence of a hidden knickpoint. 

 

7.2 Evolution of horst-graben configuration 

In this example, Cz, Q, B, D, ߣ, I, ߚ௦௦, ,୫୰ܮ ,ܮ �|௧=are set to the values used in Sect. 7.1. The 

sediment feed rate ݍୟ = 0.00083 m
2
 s

-1
, and the initial bedrock slope ܵ is set to the steady-state value 

for a rock uplift rate of 1mmyr
-1

, i.e., 0.0027. The model is then run for a rock uplift rate of 1 mmyr
-1

 

for the domains 0  x 8 km and 12 km  � 20 km and a rock subsidence rate of 1 mmyr
-1 

for the 

domain 8 km < � < 12 km. This configuration corresponds to a simplified 1-D configuration of a 

graben bounded by two horsts, one upstream and one downstream. 

 
Figure 14. Evolution predicted by the MRSAA model for localized subsidence at a narrow graben 

superimposed on broader uplift. Note the bedrock-alluvial and alluvial-bedrock transitions at the 

margins of the graben. By 15 kyr, the bed top has reached steady state, even though the bedrock surface 

in the graben continues to subside. The regional rock uplift rate and graben subsidence rate are assumed 

constant for simplicity. Here � denotes elevation at the bed top, �࢈ denotes elevation of the bottom of 

bedrock relief, and � denotes streamwise distance. 

 
Figure 15. CSA model evolution of an initial bedrock profile towards a steady-state profile. Compare with 

the MRSAA model behavior in Fig. 16. Here �࢈ denotes elevation of the bottom of bedrock relief, and � denotes streamwise distance.(Zhang,et al,2015) 
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This case cannot be implemented in models that assume a relation for cover based on the ratio 

of sediment supply to capacity transport rate, i.e., Eq. (2). This is because such models are not 

Designed to handle the case of alluvial fill of accommodation space created by subsidence. The 

results for MRSAA are shown in Fig. 14. By 15kyr, the uplifting domains evolve to a steady state in 

terms of both bedrock elevation and alluvial cover. The bedrock elevation of the subsiding domain 

never reaches steady state because it is completely alluviated. The profile at the top of the alluvium in 

this domain has indeed reached steady state by 15 000 years, with a bed slope that deviates only 

modestly from the steady-state bedrock slope driven by a uniform ߭ = 1 mm yr
-1

. 

 

7.3 Evolution of river profile with alluviated zone at river mouth 

In this example Cz, Q, B, D, ߣ, I, ߚ௦௦, ,୫୰ܮ ,ܮ �|௧=are again set to the values chosen in Sect. 

7.1. The bedload feed rate is 0.00083 m
2
 s

—1
; the steady-state bedrock slope ܵ associated with this 

feed rate is 0.0026 for ߭ < 5 mm yr
—

 
1 

(Fig. 10b). The initial bedrock slope is set, however, to the 

higher value of 0.004. The rock uplift rate u for this case is set to zero, for which the steady-state 

slope is again 0.0026. 

The result of CSA for this case, with base level �|�=pinned at zero elevation, is shown in 

Fig. 15. As in the case of Sect. 7.1, the bedrock slope evolves from the initial value of 0.004 to the 

steady-state value 0.0026 by means of an upstream-migrating knickpoint. Only 4000 years of evolu-

tion are shown in the figure, by which time the knickpoint is 4.8 km from the feed point. 

MRSAA is implemented with somewhat different initial and downstream boundary 

conditions in order to model the case of a bed that remains alluviated at the downstream end. This 

condition thus corresponds to an alluviated river mouth. The initial bedrock slope is again 0.004, and 

the downstream bedrock elevation �\௧= is again 0 m. The downstream alluvial elevation �\�=, however, is held at 10 m, so that the downstream end is completely alluviated. The initial 

slope S for the top of the bed is 0.0021, a value chosen so that the bed elevation equals the bedrock 

elevation at the upstream end. Results of the MRSAA simulation are shown in Fig. 16. 

Figure 16a-c show the early-stage evolution, i.e., at t = 0, 10 and 100 years. Over this period, 

a bedrock-alluvial transition (from mixed bedrock-alluvial to purely alluvial) migrates downstream 

from the feed point to x = 13.6km, i.e., 6.4km upstream of the terminus. Bedrock incision is negligible 

over this period. 

Figure 16d-f show the bedrock and top bed profiles for 1000, 2000 and 4000 years. Over this 

period, the bedrock-alluvial transition migrates upstream. As it does so, the bedrock slope 

downstream of � = 13.6km remains alluviated and does not change. The bedrock slope between the 

transition and � = 13.6km evolves to the steady-state value of the case in Sect. 7.2, and the top bed 

slope downstream of the transition evolves to the same slope as the steady-state bedrock slope 

(because with ߭ = 0, ߮< vanishes). The figures show that the upstream-migrating bedrock knickpoint 

is located at the bedrock-alluvial transition. By 4000 years, the transition has migrated out of the 

domain and the bed is completely alluviated. The thickness of the alluvial cover upstream of � = 

13.6km is, however, only 1.05m, i.e., only slightly larger than the macro-roughness height of 1 m. 

This means that although the reach is everywhere alluvial at 4000 years, the bedrock is only barely 

covered. 

 

8   Discussion 
The MRSAA model is a direct descendant of the model of Sklar and Dietrich (2004) in terms 

of the formulation for bedrock incision, and the model of Struiksma (1999) in terms of the 

formulation of the conservation alluvium over a partly covered bedrock surface. In terms of its 

capabilities, however, it shares much in common with the previous work of Lague (2010), and in 

particular with his SSTRIM model. These include (a) the melding of incision and allu viation into a 

single model, (b) the inclusion of a cover relation that is based on geometric bed structure, and (c) the 

ability to track simultaneously the spatiotemporal variation in both incision rate and alluvial cover. 

Priority should accrue to Lague (2010) in regard to these features. The present model has the 

following advantages: (a) the Exner equation of sediment conservation is specifically based on a 

formulation of the statistics of partial and complete cover over a rough bedrock surface; (b) the 

formulation yields a specific relation for alluvial wave velocity as a function of cover, ranging to a 
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maximum value for minimum cover to 0 for complete alluviation; and (c) it allows for explicit 

description of the nonlinear advective-diffusive physics of the problem in terms of an alluvial 

diffusivity and two wave celerities, one directed upstream and associated with bedrock incision, and 

one directed downstream and associated with alluviation.  

The form of the MRSAA model presented here has been simplified as much as possible, i.e., 

to treat a HSR (highly simplified reach) with constant grain size D. This has been done to allow for a 

precise and complete characterization of the behavior of the governing equations. 

 
Figure 16. MRSAA model evolution of bed top and bedrock profiles with an imposed alluvial river mouth 

at the downstream end and an upstream-migrating bedrock-alluvial transition. The results are for (a) t = 0 

years, (b) t = 10 years, (c) t = 100 years, (d) t = 1000 years, (e) t = 2000 years and ( f )  t = 4000 years (steady 

state). Here (a), (b) and (c) show the early response, and (d), (e) and ( f )  show the late response. In these 

plots, � denotes elevation of the bed surface, % denotes elevation of the bottom of bedrock relief, and x 

denotes streamwise distance. Compare with the CSA model solution in Fig. 15. (Zhang,et al,2015) 

 

It can relatively easily be extended to: (a) abrasion of the clasts that abrade the bed, so 

abrasional downstream fining is captured (Parker, 1991); (b) size mixtures of sediment (Wilcock and 

Crowe, 2003); (c) multiple sediment sources (Lague, 2010; Yan-ites et al., 2010); (d) channels with 

width variation downstream (Lague, 2010); (e) discharge varying according to a flow duration curve 

(Sklar and Dietrich, 2006; Lague, 2010), or fully unsteady flow (An et al., 2014); and (f) cyclically 

varying hydrographs (Wong and Parker, 2006b) or "sedimen-tographs", the latter corresponding to 

events for which the sediment supply rate first increases, and then decreases cyclically (Zhang et al., 

2013). In addition, the model can and should be extended to include the stochasticity emphasized by 
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Lague (2010). Sections 6 and 7 illustrate features captured by MRSAA but not by models that assume 

a cover relation based on the ratio of sediment supply to capacity transport rate, i.e., Eq. (2). 

The MRSAA model presented here is applied to several 1-D cases with spatiotemporal 

variation. The model can easily be generalized to 2-D simply by expressing Eq. (18) in 2-D form. In 

any such implementation, however, the effect of 2-D connectivity between deep holes should be 

considered in the relation to the cover factor. 

The MRSAA model in the form presented here has a weakness in that the flow resistance 

coefficient ܥ� is a prescribed constant. The recent models of bedrock incision of Inoue et al. (2014) 

and Johnson (2014) provide a much more detailed description of flow resistance. In addition to 

characterizing macro-roughness, their models use two micro-roughnesses, one characterizing the hy-

draulic roughness of the alluvium and the other characterizing the hydraulic roughness of the bedrock 

surface. Their models can thus discriminate between (a) "clast-smooth" beds, for which bedrock 

roughness is lower than clast roughness and (b) "clast-rough" beds, for which bedrock roughness is 

greater than clast roughness. This characterization allows for two innovative features: (a) both bed 

resistance and fractional cover become dependent on the ratio of bedrock micro-roughness to alluvial 

micro-roughness and (b) incision can result from throughput sediment passing over a purely bedrock 

surface with no alluvial deposit. The models of In-oue et al. (2014) and Johnson (2014) use modified 

forms of the capacity-based form for cover of Eq. (2) in order to capture these phenomena. Their 

models are thus unable to capture the coevolution of bedrock-alluvial and purely alluvial processes of 

MRSAA. Amalgamation of their models and the one presented here, however, appears to be feasible 

and is an attractive future goal. 

Because MRSAA tracks the spatiotemporal variation in both bedload transport and alluvial 

thickness, it is applicable to the study of the incisional response of a river subject to temporally 

varying sediment supply. It thus has the potential to capture the response of an alluvial-bedrock river 

to massive impulsive sediment inputs associated with landslides or debris flows. A preliminary 

example of such an extension is given in Zhang et al. (2013). When extended to multiple sediment 

sources, it can encompass both the short- and long-term responses of a bedrock-alluvial river to 

intermittent massive sediment supply due to landslides and debris flows. As such, it has the potential 

to be integrated into a framework for managing sediment disturbance in mountain rivers systems such 

as those affected by the 2015  earthquake in  Nepal. Several landslide dams formed during that event. 

A similar potential application is the case of drastic sediment supply to, and evacuation from, rivers in  

Utterakhand, India due to   landsliding.. 

 

9. Conclusions 
In this paper after deep study and analysis of 1-D model of alluvial transport and bedrock 

erosion in a river is presented. The river bed may be purely alluvial, or mixed bedrock-alluvial, or 

may transition freely between the two morphologies. The new model, which introduced on the basis 

of study observed by Zhang et-al is called Macro-Roughness-based Saltation-Abrasion-Alluviation 

(MRSAA) model, particularly tracks not only large-scale bedrock morphodynamics and the  

morphodynamics of the alluvium over it. The key results are as follows: 

 

1. The transport of alluvium over a bedrock surface cannot in general be described simply by a 

supply rate that instantaneously affects the entire river reach downstream as it is varied in 

time. Here the alluvium is tracked in terms of a spatiotemporally varying alluvial thickness. 

2. The area fraction of cover  enters into both incisional and alluvial evolution. The alluvial 

part allows for the downstream propagation and diffusion of sediment waves, so that at any 

given time the alluvial bed can be above or below the top of the bedrock. The model thus 

allows for spatiotemporal transitions between complete cover, under which no incision 

occurs; partial cover, for which incision may occur; and no cover, for which no incision 

occurs. 

3. The MRSAA model captures three processes: downstream alluvial advection at a fast 

timescale, alluvial diffusion, and upstream incisional advection at a slow timescale. Only the 

third of these processes is captured by models that assume a relation for cover based on the 

ratio of sediment supply to capacity transport rate rather than a measure of the thickness of 

alluvial cover itself. The CSA model can be thought of as a 0-D model that applies locally. 
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The MRSAA model lends itself more directly to application to long 1-D reaches because it 

embeds the elements necessary to route sediment down the reach. 

4. The MRSAA model reduces to the CSA model under the conditions of steady-state incision 

in balance with rock uplift and below-capacity cover. The steady-state bedrock slope 

predicted by both models is insensitive to the rock uplift rate over a wide range of conditions. 

This insensitivity is in marked contrast to the commonly used incision model in which the 

incision rate is a power function of bedrock slope and drainage area upstream. The two 

models can differ substantially under transient conditions, particularly under those that 

include migrating transitions between the bedrock-alluvial and purely alluvial state. 

5. In the MRSAA model, inclusion of alluvial advection and diffusion lead to the following 

phenomena: (a) a wave-like stripping of antecedent alluvium over a bedrock surface in 

response to cessation of sediment supply, (b) advection-diffusional emplacement of a sed-

iment cover over initially bare bedrock and (c) the propagation and deformation of a sediment 

pulse over a bedrock surface. 

6. In the case of transient imbalance between rock uplift and incision with a massive increase in 

sediment feed, MRSAA captures an upstream-migrating transition between a purely alluvial 

reach upstream and a bedrock-alluvial reach downstream (here abbreviated as a alluvial-

bedrock transition). The bedrock profile shows an upstream-migrating knickpoint, but this 

knickpoint is hidden under alluvium. Models that assume a relation for cover based on the 

ratio of sediment supply to capacity transport rate, i.e., Eq. (2), capture only the knickpoint, 

which is completely exposed, and thus miss the thick alluvial cover predicted by MRSAA. 

7. MRSAA captures the mixed incisional-alluvial evolution for the case of a simplified 1-D 

subsiding graben bounded by two uplifting horsts. It captures alluvial filling of the graben, 

and thus converges to a steady-state top-bed profile with a bedrock-alluvial transition at the 

upstream end of the graben and an alluvial-bedrock transition at the downstream end. 

8. In the case studied here of an uplifting bedrock profile with an alluviated bed at the 

downstream end modeling a river mouth, MRSAA predicts an upstream-migrating bedrock-

alluvial transition at which the bedrock undergoes a sharp transition from a higher to a lower 

slope. MRSAA further predicts a bedrock long profile under the alluvium that has the same 

slope as the top bed. It also predicts that the cover is thin, so that the purely alluvial reach is 

only barely so. The steady state for this case is purely alluvial. 

9. The new MRSAA model provides an entry point for the study of how bedrock-alluvial rivers 

respond to occasional large, impulsive supplies of sediment from landslides and debris flows. 

It thus can provide a tool for forecasting river-sedimentation disasters associated with such 

events. An example application would be treatment of the aftereffects of the 2008 Wenchuan 

earthquake, which triggered massive alluviation and the formation of over 200 landslide 

dams. 

 

Appendix A: Interpretation of the abrasion coefficient ߚ 
 

Consider a clast or grain of size D and volume ܸ~ܦଷcausing abrasion over an exposed bedrock 

surface. The bedload transport rate ݍ is given as 

ݍ       =  ,     (A1)ܮܧ

 

where ܧ denotes the volume rate per unit time per unit area at which clasts are ejected from the bed 

into saltation, and ܮ denotes the saltation length. Each clast ejected into saltation collides with the 

bed a distance ܮ later; therefore, the number of clasts that collide with the bedrock (rather than with 

other bed particles) per unit time per unit area is found using Eq. (A1) 

     ሺͳ − ሻ ாౝౝ = ሺͳ − ሻ ೌౝౝ.    (A2) 

 

The volume lost from the striking clast per strike is defined as ߚ∗ ܸ,, and the volume lost from the 

stricken bedrock per strike is similarly defined as ߚ ∗ ܸ, Vg. The parameters ߚ∗ and ߚ ∗ could be 

expected to be approximately equal if the striking grain is the same rock type as the bedrock. 
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The rate at which a grain strikes the bed per unit distance moved is hence the rate at which ͳ ⁄ ;ܮ grain volume decreases downstream is given by\ 

 

    
ୢౝୢ� = ߚ− ܸ,                (A3a) 

 

ߚ     = ఉౝ∗ౝ .                (A3b) 

Using ܸ ~ܦଷ, Eq. (A3) reduces to  

                                                                   
ୢୢ� =  (A4a)                ,ܦௗߙ

 

ୢߙ      = ଵଷߚ.                (A4b) 

 

Equation (A4a) is the differential form of Sternberg's law; ୢߙ is a diminution coefficient with units L−ଵ The exponential form of Eq. (3) corresponds to the case of spatially constant ୢߙ. 

The incision rate of the bedrock E is the number of grains that collide with bedrock per unit 

area per unit time (Eq.A2) multiplied by the volume lost per strike ߚ∗ ܸ, which gives the relation 

 

ܧ     = ሺͳ − ሻ ౝౝ ∗ߚ ܸ = ሺͳݍߚ − ሻ = ሺͳୟୡݍߚ −  ሻ,              (A5)

ߚ        = ఉ∗ౝ.                 (A6) ܣ  upstream drainage area [Lʹ ] ܤ  channel width [L] CSA  acronym for Capacity-based Saltation-Abrasion model ܥ�  dimensionless Chézy resistance coefficient [−] 
ca  speed of propagation of an alluvial disturbance (positive downstream) [L T−ଵ ] ܿୟ୧  Speed of propagation of an alluvial disturbance of infinitesimal height [L T−ଵ]  ܿ  Speed of propagation of an incisional disturbance (positive downstream) [L T−ଵ] ܦ,ܦ୳  characteristic grain size of clasts effective in abrading the bed; upstream value of [ܮ] ܦ 
E  bedrock incision rate [L T−ଵ] ܨ Froude number = �/(ܪ�√ܪܤ)[−] ݂  function of χ describing cover fraction [−] 
g  gravitational acceleration [L T−ଶ] 

H  flow depth [L T−ଵ] 

HSR  acronym for highly simplified reach 

I  flood intermittency, i.e., fraction of time the river is in flood [−] 
k  coefficient in Eq. (5a) [−]  
L  reach length [L]  

Lg  grain saltation length [L]  ܮ୦ୟ୪  distance a clast travels to lose half its size (diameter) by abrasion [L]  ܮ୫୰  height of macro-roughness height [L] 

MRSAA acronym for Macro-Roughness-based Saltation-Abrasion-Alluviation model ܭ,݉,   [−]  symbols used in slope–area relation; reference drainage area [−] ݊  exponent in bedload transport relationܣ ;݊
p  areal fraction of bed that is covered by alluvium [−]  ௦௦  steady-state value of p [−]  
p0  lower reference cover fraction (0.05 herein) [−]  
p1  upper reference cover fraction (0.95 herein) [−]  �  flood discharge [Lଷ T−ଵ] ݍ, ݍ, ݍ௦௦ volume bedload transport rate per unit width; capacity value of qa; steady-state value of         

 ୟ feed, or supply value of qa [Lଶ T−ଵ]ݍ  [L ଶ T−ଵ]ݍ                        
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=          ୟ୩  value of qa at knickpoint L ଶ T−ଵ] ܴ  submerged specific gravity of sediment clasts [−] ܴݍ ߭ሺܴ�/ܦሻଵ/ଶ[−] ܵ, ܵୠ, ܵୟ bed slope; slope of bedrock; slope of alluvial thickness, −∂ηa/∂x [−]  ܵୠ୧ܵୠୱୱ, ܵୠୣ୰  initial bedrock slope; steady-state bedrock slope; reference bedrock slope [−] ܵୠ୳, ܵୠ୪ bedrock slope upstream of a knickpoint; bedrock slope downstream of a knickpoint [−] ܵୟୱୱ   steady-state alluvial bed slope at capacity [−]  ܶ , ୦ܶ, ୪ܶ period of cycled hydrograph; duration of high flow; duration of low flow [T]  ݐ  time [T] ܷ  flow velocity during floods [L  T−ଵ] ݑ∗  shear velocity = (τ/ρ)1/2
 [L  T−ଵ] ߭  fall velocity of a bedload grain [L T−1 ]  ܸ  single bedload grain volume [Lଷ ]  �  streamwise distance [L]  �̌            �/ܮ [−] ��  distance to knickpoint [L]  �  bedrock modulus of elasticity [ML−ଵ T−ଶ] �, �′      vertical coordinates (relative to bedrock base and arbitrary vertical datum, respectively) [L]  �′        bed elevation such that cover fraction p = p0 [L]  �ூ′         bed elevation such that cover fraction p = p1 [L]  

αa        coefficient in bedload transport relation [−]  
αd       diminution coefficient for an abrading clast [L−ଵ] ߚ,  ݂݁ݎ  ߚ steady-state value of ;ߚ ௦௦ coefficient of wear (abrasion); reference value ofߚ ୰ୣߚ

χ           = �/ܮ [−]  �, � , � bed elevation; thickness of alluvial layer; bedrock elevation [L]  ߢ  alluvial diffusivity defined in Eq. (26a) [Lଶ T−ଵ] ߮      = υ/(ߚ ܫ௦௦ ݍୟ) [−]  
λ       porosity of alluvial deposit [−]  �     density of water [M L−ଷ]  �    density of a bedload grain [M L−ଷ ]  �௧      rock tensile strength  [M L−ଵ T−ଶ ߬∗, ߬∗  Shields number = ݑ∗ଶ/ሺܴ� ܦሻ; critical value of ߬∗ at threshold of motion [−]  
τ       bed shear stress [M L−ଵ T−ଵ]  ߭, ߭୰ୣ relative vertical speed between the (nondeforming) rock underlying the channel and the point at   

        which base level is maintained, e.g., rock uplift rate or base level fall rate; reference uplift rate                                      [L T−ଵ] 
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