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Abstract:-[1] The bedrock river channels’ morphology is controlled by tectonic conditions and substrate substances. 

Learnings of tectonic controls remain scarce. This is due to slow tectonic rates and long response times of natural 

channels and due to the difficulty in isolating and constraining tectonic forcing conditions in the field. To study the 

effect of tectonic forcing on channel geometry of Pachmarhis (India), a numerical model of the cross-sectional 

evolution of a detachment-limited channel is developed. Its predictions are matched by an analytical model based on 

the assumption of the minimization of potential energy expenditure. Using these models, it is illustrated that how 

tectonics can alter the observed width-discharge scaling and discuss published field data in light of the findings. 

Except for one case, the models fail to correctly describe field observations of well-constrained cases. This implies 

that the shear stress/stream-power family of models is too simple to describe the behavior of natural channels. 

Additional complexities such as sediment effects and discharge variability exert a strong control on channel 

morphology and need to be taken into account in the modeling of channel dynamics and steady state.  
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Introduction 
 [2] Bedrock river channels play an important role in active landscapes: fluvial processes drive 

erosion by undercutting hill slopes and evacuating the products of mass wasting to depositional basins 

[Whipple,2004].Fluvial erosion rates and the channel's ability to transport sediment are strongly 

dependent on the channel geometry, namely, its bed slope and cross-sectional shape. Bedrock channel 

geometry is thought to evolve toward a unique steady state configuration, in which the vertical erosion 

rate matches the rate of rock uplift or baselevel lowering [e.g., Stark, 2006; Tucker and Whipple, 2002; 

Whipple and Tucker, 1999; Wobus et al., 2006]. This steady state is expected to be determined by local 

boundary conditions, which can be classed into four broad categories: (1) climate and discharge 

conditions including the mean and the variability of discharge [e.g., Craddock et al., 2007; Lague et al., 

2005a; Snyder et al., 2003b; Stark, 2006; Wobus et al., 2006; Wohl and Merritt, 2001]; (2) substrate 

properties such as rock strength [e.g., Jansen, 2006; Montgomery, 2004; Montgomery and Gran, 2001; 

Wohl and David, 2008]; 

 (3) river sediment load including the volume and variability of sediment supply and its grain size 

distribution [e.g.,Cowie et al., 2008; Finnegan et al., 2007; Hancock and Anderson, 2002; Whipple, 2007; 

Shepherd, 1972; Dietrich, 2004; Turowski et al., 2008a]; and (4) tectonic forcing [Burbank, 2007; et al., 

2004; Humphrey and Konrad, 2000; Avouac, 2001;]. While the effect of discharge has been studied 

extensively in theory and in the field, much needs to be learned about the other three groups. Because 

there have been several recent field studies and at least some reliable field data is available, it is 

concentrated on the effects of tectonic forcing. 

 [3] Quantum of Erosions are always modeled as a function of shear stress [e.g., Howard, 1994; 

Howard and Kerby, 1983; Seidl and Dietrich, 1992; Dietrich, 2004; Whipple and Tucker, 1999; Whipple 

et al., 2000]. For a given discharge, flow velocity and flow depth are higher in narrower and steeper 

channels, which in turn increase shear stress on the channel. Hence, in general it is assumed that in 

response to increased tectonic uplift the channel width is reduced, and the slope of the channel bed is 

increased. While slope response has been investigated in many studies [e.g., Gasparini et al., 2006; 

Dietrich, 2006; Whipple and Tucker, 1999, 2002], few theoretical and experimental, and only a handful of 

field studies, have dealt with the response of bedrock channel width to tectonic forcing. 

 [4] This article deals with how local tectonics can alter the observed width-discharge scaling of a 

steady state channel, using a numerical model of cross-sectional evolution of a detachment-limited 

channel. It shows that the model results are closely traced by an analytical model based on the assumption 

of the minimization of potential energy expenditure. Published field data in the context of these two 

models are discussed. It is started by reviewing recent field evidence and theories put forward to explain 

the sensitivity of channel geometry to uplift rate. Then it will be described that the numerical model 

framework and the derivation of the analytical and compare the results. Finally, published field data in 

light of the models' predictions will be discussed. 

 

1.1. Relationships between Channel Width and Uplift Rate 
 [5] Most field studies of the geometric response of bedrock channels to differing rock uplift rates 

have reported only a few data points and produced conflicting results. For example, Dongre. [2013] found 

no significant difference in the width of channels along the Pachmarhis in India , with contrasting uplift 

rates but otherwise comparable attributes (including drainage area), but the channel bed slope was found 

to have adjusted to differences in tectonic forcing. The Sonbhadra River of Pachmarhi, which is thought 

to be in a steady state, shows a typical width-area scaling relationship following a power law with an 

exponent of 0.42, despite a strong long stream gradient in incision rate reported an approximately 

constant width of the Sonbhadra River over four kilometers immediately upstream of the fault in the 

central Pachmarhis, despite a likely gradient in rock uplift rate and the doubling of the drainage area at a 

confluence within the studied river section. However, this channel to be undergoing a transient response 

to an increase in fault slip rate about one million years ago. In contrast, the Upper Denwa River in the 

Southern Pachmarhis has responded to increased rock uplift by narrowing the channel, but it has a 

constant channel slope across an active fault block with strong rock uplift gradients. The Jambudeep 
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River in the Jatashankar have responded to increased rock uplift rates by changing both width and slope. 

Afterward,  Nagduari river has decreased its width and increased its water surface slope in response to 

increased uplift rate, while  found that ephemeral streams crossing active folds in the Pachmarhis 

Mountains, adjusted slope, channel pattern, and flow width and depth under changing tectonic conditions. 

These examples illustrate that large-scale roughness (such as bed forms, large boulders or bars) may have 

an important influence on channel morphology, an aspect that has not been studied for bedrock channels. 

In summary, it seems that bedrock river channels can respond to changes in rock uplift rate in at least 

three ways, namely, by adjustments in (1) flow width, (2) channel slope, and (3) both. 

 [6] To shed light on the relative roles of slope and width adjustment to tectonic forcing, studied 

micro channels cutting through cohesive material in an experimental landscape. With increasing uplift 

rate, the slope of the experimental channels increased linearly, while the channel width decreased down to 

a steady minimum value. Thus, the experimental channels  reproduced two of the three response modes 

observed in nature: at low uplift rates both slope and width adjusted, and at high uplift rates changes were 

by slope response only. The minimum channel width was attributed to the shear stress on channel walls, 

which increases as the channel narrows, until a steady state is reached.  

 

 
Figure 1. Channel width for the paleochannels of the Sonbhadra and Denwa, Pachmarhis, as a function of 

differential incision (data digitized). Power law interpretations describe the data well. Upper Denwa and  

Lower Denwa  have been omitted for clarity but give similar results. 

 

Initially, a simple typical hydraulic scaling of channel width with discharge was assumed in which 

channel width was by definition insensitive to uplift rate. More recently, Finnegan et al. [2005] derived 

an implicit dependence of channel width on uplift rate through an explicit dependence of width on slope, 

based on the assumption that the width-to-depth ratio is constant for a given channel type. This 

assumption was supported by the work of Wobus et al. [2006, 2008], who described a model of a freely 

developing cross section of a detachment-limited channel. Moreover, Finnegan et al.'s [2005] width-slope 

 [7] With a similar motivation, It is surveyed several paleochannels crossing the active fault zone 

in southern Pachmarhis. They measured differential erosion from remnant terraces, which they assumed 

to reflect the changing rock uplift rate across the fault. In general, channel bed slopes were steeper in 
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regions with higher uplift rates, while the channel width was smaller. However, at high uplift rates, the 

channel width reached a minimum value and was insensitive to further increases of uplift rates. Although  

these streams flowed through deep gorges, as they were actively eroding and had cut to a depth of several 

times their width after faulting started. Therefore, these channels are considered to be good analogies of 

bedrock channels. The model best fitting their observations is an initial narrowing of the channel, and 

subsequent steepening, thus separating the cross-sectional response from the long-profile response in 

time. Although it is observed that a convergence with the experimental results of data can also be 

interpreted with a power law dependency of width on differential incision (Figure 1 and Table 1). 

 [8] Although it is observed that a functional relationship between valley width and uplift rate for 

the  Jambudeep and Nagduari  Rivers, the topo map  and obtained data can be used to establish such a 

relationship (Figure 2). For the Jambudeep, drainage area is near constant over the section at ~20 km
2
, 

while the Nagduari (80 km
2
) is joined by a tributary in middle of the studied reach. Along the Jambudeep 

the incision rates vary by a factor of two, over which the channel width does not exhibit a consistent 

pattern, while the channel width of the Nagduari systematically drops by a factor of about six over a 

sevenfold increase of incision rate. The majority of this drop occurs at incision rates between ~2 mm/a to 

8 mm/a. In this river, too, channel width and incision rate can be related by a power law. 

 [9] It is studied that Channel characteristics of several streams crossing active faults in the central 

Pachmarhis, Although they did not report functional relationships between width and uplift rate, 

downstream distance can be used as a proxy for uplift rate, as the variation of uplift rate is thought to be 

monotonic along the stream (Figure 3). In the case of the Dudhi River in Patalkot region channel width 

closely follows what is expected from simple scaling laws with drainage area, and increasing uplift rate in 

the downstream direction does not seem to affect channel width. The  Bori River shows a systematic 

variation in channel width, with larger widths than expected from simple scaling with drainage area in the 

middle of the studied stretch (kilometers 5-7) and smaller width elsewhere (Figure 3), despite 

approximately constant block uplift. Other parameters thought to influence the channel width, such as the 

median grain size and substrate strength, do not change along the stream. Here, a power law relation 

linking width and uplift rate does not seem to describe observations. 

1.2. Theoretical Explanations 

 [10] The work on the sensitivity of channel geometry of the Pachmarhi and uplift rate has focused 

on channel slope alone, starting from a simple detachment-limited mass balance and a stream power type 

law for bedrock incision. Since the system of equations is not closed, an auxiliary assumption is needed to 

arrive at conclusions (see section 4.1 for more details).scaling equation is more accurate in predicting  

channel width from observed slope and drainage area than a simple square root power law scaling of 

width with discharge [Finnegan et al., 2005;]. 

 [11] Lague et al. [2005b] have derived functions for the dependence of channel width on uplift 

rate for simple shear stress type erosion models [e.g., Howard, 1994; Howard and Kerby, 1983; Seidl and 

Dietrich, 1992] and for the saltation-abrasion model, in which erosion is dependent on sediment flux 

[Dietrich, 2004], assuming that slope is minimized with respect to width at steady state to close the 

system of equations. These models predict two distinct modes of channel response to tectonic forcing. At 

low uplift rates both channel slope and width are insensitive to increasing uplift rates (threshold-

dominated), while at high uplift rates, they respond according to a power law, the exponent of which is 

essentially a function of the friction equation and the incision law used in the derivation (uplift-

dominated). This exponent takes the value of ~0.23 for the simple shear stress erosion law and ~0.5 for 

the sediment supply dependent erosion law, with a slight dependence on drainage area in the latter case. 

 [12] In the following section it is described that a numerical model of the evolution of the cross 

section of a detachment-limited channel, which it will be used subsequently to study tectonic forcing of 

detachment-limited channels. 
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Table 1. Channel Width as a Function of Incision Rate 

 

 

Figure 2. Valley width reported for the Jambudeep and the Nagduari Rivers in the Central Pachmari,  
against incision rate surveyed from terrace deposits (data digitized ). While the relationship for the 
Jambudeep is well described by a power law, the lack of a trend is apparent for the Nagduari. The latter is 
joined by a tributary in the middle of the studied stretch, which could be responsible for the lacking trend in 
the width relationship. 

2.   A Numerical Model of Channel Cross-Sectional Evolution 

2.1. Setup 

 [13] In a detachment-limited channel, the steady state channel morphology is a function of the 

local boundary conditions. This explains that the channel parameters are essentially independent of what 

happens upstream or downstream and are only decided by discharge, uplift rate, and other conditions at 

the point of interest. Therefore, it is opted for a 2-D model simulating a single cross section. In this 

model, the channel boundary is discretized into a set of points, and the boundary can evolve in a 

continuous space. In each time step the model completes the following tasks: 

Channel Steady 

State? 

Power Law 

Denwa upper 1 yes                 

Denwa  2 yes                  

Lower Denwa 3 yes                  

Sonbhadra1 yes                  

Sonbhadra2 yes                  

Jambudeep yes No clear trend 

Nagduari yes                           
Tawa yes                                                       

Ganjkuwar yes insufficient data 

Bori yes insufficient data 

Dudhi  yes insufficient data 
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Figure 3. Channel width for the Bori of central Pachmarhis and the Dudhi Rivers, of Patalkot. These two 

channels crossing active faults in the Pachmaris (data digitized ). While for the Bori, the uplift rate is constant 

in the direction normal to the fault (uniform block uplift), for the Dudhi it increases in the downstream 

direction. The solid line gives the expected channel width if it scales with the square root of drainage area (see 

equation (8)). 

 

 [14] 1. Width and depth of the flow are calculated in the current cross section. 

 [15] 2. The shear stress for every point along the boundary is calculated. 

 [16] 3. The erosion rate for every point along the boundary is calculated and split into a horizontal   

                        and a vertical component. 

 [17] 4. The new position of every point in the boundary is calculated. This includes changes due  

                      to tectonic uplift. 

 [18] 5. Overhanging parts in the section are collapsed to the stable hillslope angle. 

 [19] 6. The density of points along the boundary is adjusted by adding additional nodes if the   

                      Distance between two neighboring points exceeds a predefined threshold. 

 [20] In order to calculate the shear stress distribution and erosion rates, flow width and depth   

                    have to be known for a given discharge. Flow through the section has to satisfy two      

                    Equations. One is the continuity equation 

 

                  (1) 

 

It ensures that the mass balance of water is correct. Here Q is the discharge, V  the flow velocity averaged 

over the channel cross section, and Ac the cross-sectional area of the flow. The other equation is a flow 

resistance equation, for which we choose the Manning equation [Manning, 1891], which is often used to 

model average flow velocity in mountain streams [e.g., Robert, 2003; Wohl, 2000]: 

 

              ⁄            ⁄              (2) 

 



7 

 

Here N is Manning's roughness coefficient, S the channel bed slope, and Rh is the ratio between cross-

sectional area Ac and wetted perimeter Pw, known as the hydraulic radius. Combining equations (1) and 

(2) to eliminate V gives:’ 

      
    ⁄                     (3) 

 

The product on the left-hand side of equation (3) can be calculated for any flow depth in the cross section, 

and depth is varied until equation (3) is satisfied to within an arbitrary accuracy (set to 0.1% for the model 

runs). Cross-sectional area and wetted perimeter are found by linearly interpolating between points along 

the boundary of the cross section. Mean flow velocity and hydraulic radius can be calculated from these 

values. 

 [21] The channel bed slope is calculated with reference to a fixed baselevel, set at a distance 

downstream, which is kept constant throughout a model run. The initial slope is set as a boundary 

condition. As the channel is eroded downward, the height above baselevel, and hence the channel bed 

slope, decreases. In this approach the evolution of the lowest point in the cross section is equivalent to the 

slope evolution. Therefore, our model can adjust both slope and width freely to the various forcing 

parameters. 

 

2.2. Shear Stress and Erosion 

 [22] Boundary shear stress is the product of the viscosity of the fluid and the velocity gradient 

perpendicular to the wall. It is a measure of the frictional force exerted on the wall by the fluid, and is 

often used to estimate wear and entrainment rates. The shear stress incision law [Howard, 1994; Howard 

and Kerby, 1983; Seidl and Dietrich, 1992] is based on the assumption that the erosion rate at any point 

can be expressed as a function of the boundary shear stress. It has been used in many studies [e.g., Stark, 

2006; Stock and Montgomery, 1999; Tucker and Whipple, 2002; van der Beek and Bishop, 2003; Whipple 

and Tucker, 1999; Wobus et al., 2006]. Whipple et al. [2000] and Dietrich [2004] have formulated 

incision laws for various erosional processes as functions of boundary shear stress. Similarly, bed load 

transport equations have also been formulated as power law functions of shear stress [e.g., Bagnold, 1977; 

Fernandez Luque and van Beek, 1976; Meyer-Peter and Muller, 1948; Parker, 1990]. Here we assume 

that such descriptions are appropriate and that erosion rate can be written as a function of shear stress and 

material properties.  

 [23] There are precise theoretical protocols for the calculation of shear stress along the boundary 

of a channel cross section of arbitrary shape [e.g., Diplas, 1990; Lundgren and Jonsson, 1964; Parker, 

1978a, 1978b; Pizzuto, 1991; Vigilar and Diplas, 1997], but they are complex and numerically expensive. 

Simpler models have been developed for specific, fixed cross-sectional shapes [e.g., Knight andPatel, 

1985; Knight et al.,[1984]. The model has a freely evolving cross section, and used a geometric model, 

the merged perpendicular method (MPM) by Khodashenas and Paquier [1999] to calculate local shear 

stresses. This method is a generalization of earlier geometric methods and has reproduced measured shear 

stress distributions in experimental, straight channels with deviations of less than 2% [Khodashenas and 

Paquier, 1999]. 

 [24] In MPM, the cross section is discretized into a set of points. The perpendicular bisectors for 

every pair of nearby points are found and traced into the cross section, until they meet another line or 

cross the water level (Figure 4). When two or more lines meet in a point, they are merged according to the 

formula: 

     ∑                            (4) 

 

Here    is the vector along the resulting line,    are the vectors along the lines to be merged, and    is 

the weight of line n. Every perpendicular bisector starts with a weight of one, upon merging the weight of 

the resultant line is equal to the sum of the weights of the merged lines. The merged lines are again traced 

in a similar fashion, until no more crossings occur within the wetted channel. This method results in a 

polygon associated with each point of the cross section. The shear stress at a point is taken to be 
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proportional to the area of the polygon divided by the length of the channel boundary along the edge of 

the polygon according to 

 

 
Figure 4. The figure explains the Merged Perpendicular Method (MPM): The cross section is defined by a set 

of points in a 2-D space (solid circles). The perpendicular bisector of each segment (starting at the midpoints 

depicted by open circles) of the cross section is traced until it meets another line. The two (or more) crossing 

lines are merged according to equation (4). This is repeated until the merged line crosses the water surface. 

The shear stress at point N is proportional to the area of the polygon (gray shaded) next to it divided by the 

local wetted perimeter (equation (5)). 

 

                       (5) 

 

Here   is the density of water and g the acceleration due to gravity,    is the shear stress at point i, Ai is 

the area of the corresponding polygon and Pi the length of the sides of the polygon which are located 

along the channel boundary (thelocal wetted perimeter). 

 [25] The erosion rate at a point is calculated using a detachment-limited shear-stress incision law 

[Howard,1994; Howard and Kerby, 1983; Seidl and Dietrich, 1992]: 

 

                      (6) 

 

 [26] Here E is the erosion rate,   the bed shear stress,    the critical shear stress for onset of 

erosion, ke describes the erodibility of the rock and a is a dimensionless constant. Equation (6) is valid for    >   ; otherwise E = 0. Erosion is assumed to be normal to the bed surface at every point. As the cross 

section is modeled by a discrete set of points, it is difficult to establish the precise gradient of the channel 

bed. In our routine erosion at a point is assumed to be normal to the straight line connecting the two 

neighboring points. 

 

3.   Results 

 [27] It is now focused that the geometry of steady state crosses sections under constant model 

conditions. Default values for fixed parameters are listed in Table 2. Other parameter values are explained 

in the text. Mainly it is interested in functional relationships and scaling, and has picked parameter values 

as order of magnitude estimates (in particular the erodibility ke). To explore the complete parameter 

space, some of the input values for uplift rate are unrealistically high. 
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 [28] During the process of simulations a steady state channel geometry is said to be achieved 

when the channel geometry so that the indicative channel response parameters (flow width, flow depth, 

bed slope, wetted perimeter, hydraulic radius and mean flow velocity) are constant in time, and vertical 

erosion matches rock uplift at any point in the cross section. Steady state sensu stricto only occurred in 

simulations with uplift rate U =0. Then, because of constant discharge, the section degrades until at every 

point in the section the shear stress is lower than the critical shear stress. In simulations with nonzero 

uplift rate erosion is nonzero. Occasionally, this leads to undercutting and slope failure, and widening of 

the channel. However, deviations from equilibrium values are always in the same direction (i.e., the 

channel always widens), are negligibly small (of the order of 0.01-0.2%), and easily detectable in the time 

evolution of the system. Thus, they do not hamper the recognition of a steady state sensu lato. 

Furthermore, channel bed slope generally remains unaffected by slope failures and provides a means to 

check for steady state. Since steady state channel geometry is dependent only on local boundary 

conditions, the results presented here give generic functions describing the dependence of slope, width 

and other geometric parameters on boundary conditions, and not a specific scenario such as a channel in a 

uniform uplift field. 

 
                    Table 2. Default Values for Various Parameters Used in the Simulations 

Parameter  Meaning Value   Manning's roughness coefficient 0.035            critical shear stress 30 Pa    erodibility constant 8  10
-12

 kg
-a

m
a+1

s
2a-1

   exponent 1   stable angle        time step 1week 

 

 

Table 3. Results for Simulations With Qw = 50 m
3/s 

and U =1 cm/a Starting From Different Initial Cross 

Sections and Channel Bed Slopes
a
" 

Initial Slope 

 

Initial Cross Section Width (mm) Depth (mm) 

 

Mean Flow 

Velocity (m/s) 

Slope 

0.12 Qw = 50 m
3/s

, U =10 cm/a  8194 3247 2.43 0.00333 

0.1 Qw = 100 m
3/s

, U =0.1 cm/a 8198 3248 2.43 0.00333 

0.1 Qw = 200 m
3/s

, U = 0.1 cm/a 8207 3246 2.43 0.00333 

0.025 V-shaped  8199 3249 2.43 0.00333 

0.0025 V-shaped 8196 3248 2.43 0.00333 

0.12 V-shaped 8199 3247 2.43 0.00333 

 

3.1. Dependence on Initial Conditions and Model Setup 

  [29] At the begining of every run an initial cross section and channel bed slope are specified. For 

zero uplift rate U =0, steady state geometries were found to depend on these initial conditions. Once the 

channel cross section reaches a configuration with shear stresses below the erosion threshold, it cannot 

evolve further. This may happen for several channel geometries, and a meaningful steady state cannot 

then be reached. However, it is questionable whether detachment-limited conditions, which give rise to 

this model behavior, apply in systems without tectonic forcing. In light of this, it shall not further consider 

results from zero uplift runs. At nonzero uplift rates the channel bed slope will increase steadily when 

shear stresses are below the erosion threshold until erosion commences again. Then, the channel cross 

section can adjust to the boundary conditions completely. Consequently, initial conditions do not have an 

effect on runs with nonzero uplift rates (Table 3). 

 [30] In the model runs it is used that a primary cross section with triangular shape, at two 

different spatial resolutions (one point every 10 or 50 cm across the channel), depending on discharge. To 

force short response times, the initial channel bed slope was generally set to a value larger than the steady 
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state value. The value of the stable hillslope angle   did not have an effect on steady state channel 

geometry. 

 

3.2. Dependence on Discharge 

[31] The downstream development of channel bed slope, flow width, depth and mean velocity with 

accumulating discharge can be explained by power law functions [Hack, 1957; Leopold and Maddock, 

1953; Parker et al., 2007]:  

 

                   (7) 

 

                  (8) 

 

                  (9) 

 

                   (10) 

 

 [32] Here W is the channel width, D is the channel depth, the k values are dimensional parameters 

dependent on substrate properties and tectonic forcing, and  ,  ,  , and   are dimensionless constants. 

Equations (8) to (10) are known as downstream hydraulic geometry relations and have been originally 

developed for alluvial channels [Leopold and Maddock, 1953]. For bedrock channels, equations (7) and 

(8) are generally thought to apply when the channel is in a steady state [Montgomery and Gran, 2001; 

Whipple, 2004]. Both   (known as concavity index) and   vary in the range of approximately 0.3 -0.7, 

with most commonly cited values of 0.5 for both alluvial and bedrock channels [Hack, 1957; Leopold and 

Maddock, 1953; Park, 1977; Whipple, 2004]. The relationships between steady state channel geometry 

and discharge predicted by the model for various uplift rates are shown in Figure 5. Exponent values are 

independent of uplift rate. Channel bed slope decreases with increasing discharge. The concavity index is   = 0.461. All other channel parameters increase with increasing discharge. The exponent of the width-

discharge relationship is equal to  = 0.461, while  = 0.461 and   = 0.077. 

 

3.3. Response to Tectonic Forcing 

 [33] The channel response to tectonic forcing shows two distinct domains (Figure 6): at low uplift 

rates (smaller ~0.1 cm/a for the parameter values given in Table 3; this corresponds to ~2 Pa on Figure 6) 

the channel does not respond to changing uplift rate. All channel parameters are approximately constant 

in this region. For high uplift rates the tectonic control on the channel is strong: channel bed slope and 

mean flow velocity increase with increasing uplift rate, while width and depth decrease. Similar channel 

response is observed for the inverse of erodibility. In fact, using U/ke as a variable leads to a similarity 

collapse (Figure 6), and increasing uplift rate has the same effect as decreasing erodibility. If a power law 

is fitted to the varying part of the function, the exponents are around 1.1 to 1.2 for slope, —0.18 to —0.20 

for width, —0.21 to —0.23 for depth and ~0.41 for velocity. 

 

4.   Model Interpretation and Discussion 

4.1. 1-D Models of Channel Morphology 

 [34] To describe these results it is considered simple 1-D models of steady state channel 

geometry. These models treat the cross-channel dimension parametrically. The constitutive equations for 

any 1-D model of channel morphology consist of the continuity equation (equation (1)), a flow 

 



11 

 

 
Figure 5. Steady state geometry parameters (a) slope, (b) width, (c) depth, and (d) velocity as functions of 

discharge for channels at various uplift rates. The power law exponents obtained from fits to the data are 

given on the plots for comparison (see equations (7)—(10), (17), and (18)). 

 

Resistance equation such as the Manning equation (equation (2)), the definition of the hydraulic radius: 

 

                    (11) 

and the DuBoys equation for shear stress: 

                    (12) 

 

Two further equations for the cross-sectional area and the wetted perimeter arise from an assumed 

channel shape. For example, for a rectangular channel these equations are: 

 

                   (13) 

 

                    (14) 

 

The system can then be reduced to a single equation with three dependent parameters (slope, width and 

shear stress): 

 

                                  (15) 

 

Equation (15) or a similar equation forms the basis of any 1-D model of channel geometry. To close the 

system, two additional equations are necessary. One is an erosion law. The other is an auxiliary 
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assumption, that is an equation that is chosen essentially ad-hoc, and without a sound theoretical basis. 

Previously used auxiliary assumptions include the empirical hydraulic geometry relation for channel 

width (equation (8)) [e.g., Dietrich, 2006; Whipple and Tucker, 1999] and a constant width-to-depth ratio 

[Finne an et al., 2005]. Now the equation with an extremely hypothesis and show that the predictions of 

the resulting model closely trace the results of the numerical model is closed. 

 

4.2. Comparison of the Numerical Model to an Analytical Model 

 [35] The numerical model fortells two different modes of geomorphic response of a channel to 

tectonic forcing: at low uplift rates, the geometry is insensitive to increasing uplift rates, while at high 

uplift rates, the geometric variables change with uplift rate as per a power law. Similar behavior has been 

predicted by the analytical models proposed by La ue et al. [2005b] and Turowski et al. [2007]. La ue et 

al. [2005b] derived functions for slope and width of the channel at steady state with the auxiliary 

assumption that a detachment-limited channel minimizes its slope with respect to width: 

 

      
             (16) 

 

This assumption corresponds to the optimization of expenditure of potential energy, similar to what has 

been described for alluvial streams [e.g., Huang et al., 2004; Yang et al., 1981]. The resulting equations 

for slope and width are:  

 

       [    ]                 [          ]                  (17) 

 

       [    ]                 [          ]                (18) 

 

In equations (17) and (18), shear stress     been eliminated using the erosion law (equation (6)) and the 

steady state assumption E = U. Similar equations can be derived for depth and flow velocity. It can be 

shown that equations (17) and (18) are valid for rectangular, trapezoidal and power law cross-sectional 

geometries. The dimensionless parameters CS and CW set the absolute size of the section and depend on 

the chosen channel geometry. The functional form of equations (17) and (18), with the same input 

parameters as for the numerical model, is illustrated in Figure 7. There is a close match of the predicted 

scaling exponents predicted by the numerical model and equations (17) and (18) (Table 4 and Figures 5 

and 6). 

 [36] The distinction between the numerical model and the analytical model explained by 

equations (17) and (18) lies in the way shear stress is treated. While, one mean value is used in the 

analytical model, a non-uniform distribution is calculated in the numerical model. This does not affect the 

prediction of scaling exponents (the cross section adjusts such that the spatial distribution of shear stress 

is the same for the different formative discharges at steady state), but it is expected to cause a difference 

in the absolute value of the predicted geometrical parameters. The effect is best illustrated using the 

width-to-depth ratio W/D, which is predicted by the analytical model (equations (17) and (18)) to be 

constant (W/D = 2 for rectangular cross sections). The numerical model predicts larger values of W/D 

(approximately two to three), independent of discharge and boundary roughness, but dependent on uplift 

rate, critical shear 
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Figure 6. Steady state geometry parameters (a) slope, (b) width, (c) depth, and (d) mean flow velocity as 

function of uplift rate normalized by erodibility for channels at various discharges. The normalization leads 

to a similarity collapse of the two variables, as can be seen for the data for Q =50m
3
/s .  Solid lines show 

realizations of equations (17) and (18) for slope and width with Q = 50m
3
/s. Gray shading shows the 

approximate extent of the threshold-dominated region. 

 

stress and erodibility (Figure 8). The cause of this variation is explained below. 

 [37] Using equations (17) and (18), we can now explain the two modes of channel response to 

tectonic forcing. When the uplift rate is less, the term dependent on critical shear stress is larger than the 

term dependent on uplift rate: 

 

                   (19) 

 

and the latter can be neglected. Then, channel bed slope and width are approximately independent of 

tectonic forcing. Similarly, when 

                    (20) 

 

the threshold term can be ignored and width and slope are power law dependent on uplift rate. Turowski 

et al. [2007] suggested the terms ''threshold-dominated'' and ''uplift-dominated'' for the two modes of 

response. 
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Figure 7. Functional form of (a) slope and (b) width response on tectonic uplift as predicted by equations (10) 

and (11) for a discharge Q =50 m
3
/s .  In the threshold-dominated domain both width and slope are 

approximately independent of uplift rate. Gray shading shows the approximate extent of the threshold-

dominated region, and the gray line at U = 0.1 mm/a shows the approximate boundary between threshold- 

and uplift-dominated domains. 
 

 

Table 4. Exponents of Discharge Relationship for Analytical Solution Using the Optimization of Potential 

Energy and Numerical Model for Constant Generating Discharge and Various Uplift Rates 

Parameter Theory U = 0.05 cm/a U = 1  cm/a U =10 cm/a 

Slope 0.461 0.462 0.462 0.462 

Width 0.461 0.460 0.461 0.462 

Depth 0.461 0.461 0.460 0.461 

Velocity 0.077 0.077 0.077 0.077 

Cross-sectional area 0.923 0.922 0.923 0.923 

Wetted perimeter 0.461 0.461 0.461 0.462 

Hydraulic radius 0.461 0.462 0.462 0.462 

 
 [38] Note that the boundary between these domains is equal for slope and width in the analytical 

model (~2Pain both cases, Figure 7), while for the numerical model the boundary for width (~20 Pa, 

Figure 6b) is larger than for slope (~4 Pa, Figure 6a). Likewise, the domain boundaries for depths and 

velocity are at different values of relative uplift rate. These differences can be used to explain the 

variation of the channel width-to-depth ratio with uplift rate: the domain boundary is at a lower uplift rate 

for flow depth than for width. For high and low uplift rates the width-to-depth ratio is predicted constant, 

in parallel to the analytical model. But at intermediate uplift rates the channel walls are in the threshold-

dominated regime (i.e., width is not sensitive to uplift rate; Figure 6), while the bed slope progressively 

becomes uplift-dominated (slope increases with uplift rate; Figure 6). The spatial distribution of shear 

stress along the section varies with uplift rate, explaining the limitation of the analytical model which 

assumes a constant distribution independent of uplift rate. The prediction of a non-constant width-to-

depth ratio is thus a direct consequence of the inclusion of a threshold for incision in our model. 
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4.3. Width-Slope Scaling and the Width-to-Depth Ratio 
 [39] The predictions for the width-to-depth ratio need some further discussion. In this model, the 

width-to-depth ratio is free of discharge and boundary roughness, but it increases from about two to about 

three over the range of tested uplift rates. In addition, it varies with critical shear stress and erodibility ke 

(Figure 8). As outlined above, this is a direct result of the inclusion of an erosion threshold. On the basis 

of the assumption that the width-to-depth ratio is constant for a given channel type, Finne an et al. [2005] 

showed that channel width should be a power function of channel bed slope: 

 

      [         ]                    (21) 

 

Similar dependencies have subsequently been reproduced by Wobus et al. [2006, 2008] with a model with 

freely adjusting cross section suggested an empirical equation with slightly different exponents to those in 

Finne an et al.'s [2005] model. It can obtain a function similar to equation (21) from equations (17) and 

(18) by eliminating uplift rate. The equation for channel width reads then: 

 

                                  (22) 

 

This is identical to equation (21) in the dependency of width on discharge and slope. As mentioned above, 

equations (17) and (18) result in constant width-to-depth ratios, the precise value of which depends on the 

channel geometry assumed in the calculation, thus converging with the auxiliary assumption of Finne an 

et al.'s [2005] model. Because of the dynamic treatment of channel width, the width-to-depth ratio is 

variable in the numerical model. The assumption of constant width-to-depth ratio is not necessary to 

obtain a power law scaling between width and slope and is probably incorrect for natural channels [cf. 

Turowski et al., 2007; Wobus et al., 2008; Wohl and David, 2008]. 

 

 
Figure 8.  Width-to-depth ratio as a function of (a) discharge, (b) uplift rate, (c) erodibility, and (d) critical 

shear stress. The simulations for Figures 8c and 8d were done at Q =50m
3
/ s  and U = 0.1 mm/a. 
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4.4. Comparison With Field Observations 
 [40] In section 4.2, it is established that equations (17) and (18) explain the scaling of channel 

parameters with boundary conditions for steady state channel cross sections produced by the numerical 

model. It can thus be used these equations for a comparison with available field data. In a typical field 

setting, both drainage area and uplift rate vary along stream, and the downstream evolution of channel 

width can deviate considerably from the often cited square root relationship with drainage area (equation 

(8). Because in the model the discharge control on channel width is stronger than the uplift control 

(scaling exponents are 6/13 and —3/13, respectively; equation (18), a downstream reduction in width can 

only be achieved if uplift rate increases much more rapidly in the downstream direction than discharge. 

As an illustration, consider a setting where uplift rate varies systematically in the downstream direction. 

Since discharge increases in the downstream direction uplift rate varies as a function of discharge, for 

example as a power law: 

 

                  (23) 

Then, equation (18) can be rewritten: 

         [          ]     (      )        (24) 

 

Neglecting the threshold term in equation (24) to make the relationship easier to interpret (this is 

equivalent to considering the uplift-dominated domain), the width-uplift rate relationship can be written 

as: 

                 (25) 

where 

                       (26) 

 

In the uplift-dominated mode, equation (24) is an increasing function of U for all 0< b< 2, and a 

decreasing function for all cases. In most field studies of streams, channel width decreases as a function 

of incision rate (Table 1). This could imply either a strongly increasing uplift rate (b > 2) or a decreasing 

uplift rate (b<0) in the downstream direction. Similarly, by eliminating uplift rate instead of discharge 

in equation (18), one obtains width as a function of discharge: 

 

          [            ]                (27) 

 

Neglecting the threshold term, equation (27) results in: 

 

                 (28) 

 

where 

                       (29) 

 

This is like to equation (8), with a scaling exponent dependent on the local differences of uplift rate. 

Equations (28) and (29) explains how local tectonics can modify the observed width-discharge scaling in 

steady state channels from what is expected purely from a width dependence on discharge. Now field 

cases in light of equations (24)-(29) will be discuss 

 [41] In the reaches surveyed the Denwa and Sonbhadra River were joined by tributaries and 

discharge can be assumed to be approximately constant. From equation (18), it would then expect channel 

width to decrease with incision rate according to a power law with an exponent of —3/13 (  0.23). The 

measured exponents of the width-incision rate relationship are much larger than this, with three values 
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close to —1 and one each at —0.55 and —0.29 (Table 1). Hence, channel width decreases faster with 

incision rate than expected for a steady state channel. However, it needs to be born in mind that the 

measurements reflect a steady state. It is concluded that the channels narrowed before they steepened. The 

initially low channel gradient may have been the reason for the small width in comparison to the steady 

state scaling relationships expected from equation (24). 

 [42] In the Nagduari River, drainage area is approximately constant over the reach has been 

studied.  Here too, the measured width-incision rate exponent (—  0.59) is much higher than expected for 

a detachment-limited channel at steady state. The case is more complicated for the remaining field sites, 

where both discharge and uplift rate vary along the channel.  The Jambudeep River, a tributary joining the 

stream in the middle of the studied reach may be responsible for the lack of a trend between valley width 

and incision rate. In the Tawa River, the measured width-incision rate exponent is   0.44 for channel 

width and    1.11 for valley width. The measured incision rate is indeed a power function of the 

representative discharge, with a best fit exponent of b =  0.62. The values of b and   are related by 

equation (26) and the expected value of     0.98. This is reasonably close to the exponent derived 

from valley width. 

 [43] For the rivers studied, incision rate is not resolved along the channel and only some general 

information is available. Therefore, a power law exponent for the width-incision rate relationship cannot 

be derived. However, it can be discussed these examples using drainage area as a model for discharge. 

For the Dudhi River the downstream evolution of channel width is well described by a power law 

function of drainage area, with a best fit exponent of 0.51. Using equation (26), this implies that uplift rate 

decreases with increasing area according to a power law with an exponent of — 0.21. This contradicts 

what is known about local tectonics: the Dudhi crosses a tilting fault block and uplift rate increases in the 

downstream direction. Similarly, for the Bori width-area exponent of 0.78 implies an uplift-area exponent 

of —1.38, despite the fact that the stream crosses a fault block with constant uplift. 

 [44] In summary, of the field cases documented in the literature, only the geometry of the 

Ganjkunwar River can be explained to a reasonable extent within our model framework, if the valley 

width is used for computations excluded shear stress type incision models (such as equation (6)) as 

inconsistent with their data. However, the additional assumptions they used to close the equations include 

for example the hydraulic geometry equation for channel width (equation (8)), with constant prefactor kw 

(in our models, kw is a function of uplift rate). If equation (18) is solved for E (or equivalently, U), the 

strong dependence of incision rate on channel width in steady state channels becomes clear:  

 

                                      (30) 

 

This analysis shows that an adequate treatment of channel width in the model formulation can 

substantially change predictions for steady state geometry. 

 [45] This model fails to predict the channel geometry of the other documented rivers. This could 

have several causes. First, it has been argued that bedrock erosion is often driven by the impact of moving 

sediment particles and that sediment supply exert a fundamental control on incision rates and channel 

morphology. Second, the variability of discharge is known to be a first order control on fluvial incision 

rates, especially when an erosion threshold is important. In fact, have demonstrated that for long return 

times of erosive events the threshold-dominated domain in the slope response disappears, and that slope 

depends instead on uplift rate according to a power law. Although it is assumed in their derivation that 

channel width is independent of uplift rate, their work has shown that the erosion threshold and the 

variability of discharge together influence the rock uplift rate at which the transition occurs between the 

threshold-dominated domain and the uplift-dominated domain. Turowski et al. [2008a] have demon-

strated that in the Liwu River, Taiwan, the interplay of sediment supply and discharge variability sets the 

cross-sectional channel geometry. There, extreme flood events, for instance typhoon-driven discharges, 

carry large sediment loads which protect the thalweg and enhance erosion on the channel walls. 

Converging results were found for other Taiwanese rivers. Turowski et al. [2007] used an incision law 
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dependent on sediment supply to derive equations for channel morphology, in which the scaling 

exponents vary considerably with the sediment supply situation. This model is adequately describe well-

constrained field examples of channels thought to steady state implies that stream-power-type erosion 

laws are too proper to describe channel processes in most conditions, width variation is fully taken into 

account. Therefore, sediment effects on erosion and a realistic flood cycle is included in future modeling 

attempts. 

 [46] Tomkin et al. [2003] explicitly considered the different roles of channel width and valley 

width. In the Tawa River, the scaling relations of channel width with discharge and of valley width with 

discharge are quite different, with a width-area scaling exponent of 0.76 for valley width and 0.42 for 

channel width. Using equation (24), the data from this river are consistent with the model if valley width 

is used, but not if channel width is used. This opens the question of which width measured in the field 

corresponds to the theoretical value, and when does a model such as the one developed here apply? In the 

Ganjkunwar channel width is equal to valley width for the reaches with highest uplift rates report 

decreasing valley width for the Dudhi River in the downstream direction and suggest that erosive power is 

determined by valley width in this stream. Brocard and van der Beek [2006] hypothesized that the valley 

width reflects the frequency of strath erosion, and the ratio of channel width to valley width decreases as 

lateral erosion occurs more frequently. Lateral erosion is more important during floods [Hartshorn et al., 

2002] and when sediment is abundant in the channel [Hancock and Anderson, 2002; Turowski et al., 

2008a]. Therefore, the ratio of channel to valley width seems to be closely related to discharge variability 

and sediment supply. To rigorously assess the different roles of channel and valley width needs a 

modeling framework that includes the effect of sediment and the flood cycle on channel geometry. In 

addition, the role of substrate properties and of weathering on channel development and strath formation 

needs to be better understood [cf. Montgomery, 2004; Wohl, 2008]. 

 

5.   Conclusions 
 [47] To find out the shortcomings between theoretical predictions of bedrock channel response to 

tectonic uplift in Pachmarhis and functional forms observed in experiments and nature, it is constructed a 

numerical model simulating the evolution of the cross section of a detachment-limited channel. As in 

previous models [Stark, 2006; Wobus et al., 2006, 2008], this effort has reproduced scaling relationships 

of channel geometry with discharge as often observed in nature. In contrast to an earlier model with a 

freely developing cross section [Wobus et al., 2006, 2008], It is included an erosion threshold in the 

model formulation. This has led to the prediction of a threshold-dominated response domain at low uplift 

rates, in which all channel parameters are approximately independent of uplift rate. Moreover, it is  

treated the channel bed slope as a dependent parameter rather than a boundary condition, which has given 

rise to slightly higher exponents in the width-discharge relation. However, as the model is similar in many 

ways to the one presented by Wobus et al. [2006, 2008], similar limitations apply. In particular, it is not 

explicitly modeled sediment transport and its effects on erosion. 

 [48] It is observed that the inclusion of an erosion threshold leads to a width-to-depth ratio 

dependent on uplift rate, erodibility and critical shear stress. This differentiates the assumption of 

Finnegan et al. [2005] that the width-to-depth ratio is constant for a given channel type. Since Finnegan 

et al. 's [2005] original hypothesis has been tested against a very limited resources especially for bedrock 

channels, this study of Pachmarhis highlights the need for the collection of further field data in a wide 

range of different settings. 

 [49] All model results are found minutely by an analytical model based on the assumption of 

minimized energy expenditure in steady state channel cross sections. Although this convergence lends 

some credibility to optimization assumptions such as this one, it is still lacking a complete understanding 

of the physical processes driving the channel to the steady state geometry. It is used that the analytical 

model to illustrate how local tectonics can alter the observed width-discharge scaling and it is compared 

predictions with field observations. For stream  the model  is proper to make predictions consistent with 

observations. The results imply that stream-power-based erosion models are too simple to describe the 

processes in natural channels.  
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Notation 

A upstream drainage area, m
2
. 

Ac channel cross-sectional area, m
2
. 

Ai polygon area associated with point i, m
2
.  

a exponent in erosion law. 

b uplift rate-discharge exponent. 

CS shape factor in equation describing channel bed slope. 

CW shape factor in equation describing channel width. 

c uplift rate-discharge prefactor, m
1-3b

 s
b—1

. 

D m flow depth. 

E erosion rate, m s
—1

. 

g acceleration due to gravity, m s
—2

. 

kd prefactor hydraulic geometry (depth), m
1-3δ

 s
 δ
. 

ke prefactor in simple shear stress incision law, kg
-a

 m
a+1

 s
2a—f

 

ks prefactor hydraulic geometry (slope), m
3θ

 s
— θ

. 

kQS constant factor in erosion law, kg m
—(1

+
3m)

 s
—1

. 

kv prefactor hydraulic geometry (velocity), m
1-3v

 s
v—1

. 

kw prefactor hydraulic geometry (width), m
1-3w

 s
w
. 

N Manning's roughness coefficient, m
—1/3

 s. 

n summation index. 

Pw wetted perimeter, m. 

Pi polygon perimeter along the channel wall for point i,m. 

Q water discharge, m
3
 s
—1

. 

Rh hydraulic radius, m. 

S channel bed slope.  t time step, s. 

U uplift rate, m s
—1

. 

V flow velocity averaged over channel cross section, m s
—

 
1
. 

vm vector along line m/vector of merged line. 

vn vector along line n/vector of lines to be merged. 

W flow width, m. 

wn weight of line n.   hydraulic geometry exponent (depth).   stable hillslope angle.   hydraulic geometry exponent (slope).   width-uplift rate exponent.   density of water, kg m
—3

.   bed shear stress, Pa.    critical shear stress, Pa.    shear stress at point i, Pa.   hydraulic geometry exponent (velocity).   hydraulic geometry exponent (width). 
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