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Abstract:- In this paper, it is considered that mathematical and numerical analysis of a deterministic model describing 

river channel formation and the evolution of its depth. The model involves a degenerate nonlinear parabolic equation 

(satisfied on the interior of the support of the solution) with a super-linear source term and a prescribed constant 

mass. It is proposed here that a formulation of the problem which allows us to show the existence of a solution and 

leads to a suitable numerical scheme for its approximation. A particular novelty of the model is that the evolving 

channel self-determines its own width, without the need to pose any extra conditions at the channel margin. The theme 

of the article is a free boundary formulation for the river formation giving rise to a measure on the free boundary. 
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 Introduction 

The main results of  the work is presented here, concerning the deterministic model for the river 

channel formation introduced by A.C. Fowler, N. Kopteva and C. Oakley (2007), Diaz, J.I.  Fowler, A. C. 

Mufioz, A. I and Schiavi, E. (2008) The ingredients of a model are variables describing channel flow and 

sediment transport, and the mechanism of channel formation arises through an instability, in which locally 



increased flow causes increased erosion, which in turn increases the flow depth and thus also the flow. This 

positive feedback induces instability, as was shown by Smith and Bretherton (1972). The starting point was 

a coupled set of partial differential equations describing s(x ,y , t ) ,  the hillslope elevation, and h(x,y , t ),  the 

water depth                  (1.1) 

this represents conservation of mass of flow and sediment. The mean flow velocity u is determined through 

a momentum balance equation, while the sediment flux   is usually taken as an empirically required 

function of flow-induced bed stress and bed slope, the resulting combination (the effective bed stress) being 

denoted    The source term r represents rainfall, while U represents tectonic uplift. The time derivative in 

the water mass equation is ignored. It is assumed that it has been written in dimensionless form, so that the 

variables are O(1). One can show that suitable models for the flow speed u and effective bed stress   are       |  |        | |       (1.2) 

 

where typically       and the down-water slope normal n is defined by      |  |    represents the 

water surface elevation, and in dimensionless terms is related to hill slope elevation s and water film 

thickness h by   = s+    The parameter   is very small, a typical estimate being     . Finally, the 

sediment flux is taken to have the form       where   | | and the down-sediment flow normal N 

is N       is an increasing function of  , with      ⁄  being a popular choice (this essentially stemming 

from the model of Meyer-Peter and Muller, 1948). Uniform overland flow is unstable to   dependent 

perturbations of small wavelength, and it can be examined the nonlinear evolution of these by directly 

seeking asymptotic expansions in terms of  . To do so, it is firstly supposed that the channels which form 

are aligned in the   direction, and (sensibly) that the perturbation to the water surface is small, comparable 

to the overland flow depth:          It may be then linearize the geometry of the system, to find that                       {         }  +…, where j is the unit vector in the  direction and    |    | is the unperturbed downhill slope. The nonlinear channel evolution then arises from a 

rescaling of the hill slope evolution equation, in which it is put                       ⁄    after some 

algebra, it is found that the leading order sediment transport equation takes the form 
          ⁄    ⁄     ⁄    [        ]  where           

 It is important to realize that this equation arises through conservation of sediment. Only Y 

derivatives are present, because the lateral length scale is so much smaller than the downslope one. The 

perturbation Z to the water surface is in fact then determined by quadrature of the water conservation 

equation, but integration of this equation in the across stream direction yields the integral 

constraint∫                     , where L is the spacing (on the original hill slope length scale for  ) 

between channels; the limits in the integral are, however, infinite because the integral is with respect to the 

much smaller channel width length scale. Suitable initial and boundary conditions for the channel depth are 

that                           the above equation, together with the integral constraint and 

initial/boundary conditions, forms the basis of our study. It will be assumed that S' > 0, so that the nonlinear 

term in the H  equation is a source. We define                                                          

 

 



3 

 

2   Mathematical analysis 
 It is considered that the problem which is assuming an initial thickness perturbation     satisfying natural physically based hypothesis, i.e., a bounded and non-negative function with a 

compact and connected support [      ] such that  form ∫                for  m>1  (so including 

the case of m = 3/2 as before. For the sake of simplicity of the exposition it is also assumed symmetric 

initial data. It will be especially interested in the question of global solvability (in time) of the following 

problem: find a continuous curve   [                           [                          \ 
  

{   
                                                                                                                                                                                                                                                                                                 ∫              

               
where            (    )  { }           Notice that    denotes the space of 

distributions on   and is   the positivity subset of the solution. Later on it can be made more precise the 

(minimal) regularity of the sol    solution. The function   is called the interface separating the 

(connected) region where        from the region where         it is unknown and it is usually 

called the free or moving boundary of the problem. Due to the free boundary it is referred to the strong 

formulation (SL) as the strong-local formulation. It is emphasized that the mass conservation constraint 

given in (SL) prevents possible blow-up phenomena which could arise (without this condition) due to the 

presence of the source term   in the equation. 

An important difficulty, in order to get a global formulation (i.e. extended to the whole domain                and not only on         is the necessity to provide a suitable description of 

the flux         at the free boundary. This leads to a new constrained global formulation suitable 

for mathematical analysis and numerical resolution. Problems of this type arise in fluid mechanics 

(problems of the Bernoulli type), in combustion and in plasma physics [Diaz, J.I., Padial J. F. and 

Rakotoson, J.M. (2007)]  

To prove the existence, an auxiliary global formulation can be used on the whole domain     [   ]  to be precise it is introduced that the notation   {      }to design the Dirac delta distribution located 

at the interface      for each        (      {      })         
The reformulation of the mass constraint requires the "zero total measure" condition. So, the global 

formulation is: 

 
{  
  
                               {      }                                           (       )                                                                                                                                                                          ∫           

            
    

It is used that a two steps iterative approximation. The main idea is to construct the sequence {              } as solutions of problems 



     {  
                                  {          }   (       )                                                                                                                                                                                              

 (where for     it is used as     the initial condition   ) and then {            } By 

 

   { 
                                            ∫ (      )     

 (        )                     
 

for some          For the detailed proof of the convergence of the algorithm see Diaz et al. 

Theorem there exists a function               and a function    ([   ]       )           

{  
                       {      }                (       )                                                                                                                                                   

 

and       ∫                
 
Concerning the numerical resolution of the problem (P), for each initial condition h0, its mass is computed, 

say M/2, and the associated stationary solution   to which the solution should converge when       see Fowler et al., 2007. In order to discretize with respect to the coordinate x, at each time level       piecewise linear finite elements will be employed       {    ([    )  |             } in a uniform grid,      of step   Also,     {  } is a base of finite linear elements in       Then, the 

discretized problem is formulated as follows: Find                 =∑                      ∫       
         ∫     

             ∫         
                

   ∫         
           ∫    

                                                             

In order to deal with the nonlinearities, It is considered that the iterative scheme: for p=2n+1 from 1 to N, n 

= 0,1, 2..., and N an odd number to be fixed, to consider the problem,     ∫ (         )    
       ∫     

             ∫ (       )    
    (         )        

   ∫ (       )    
    (         )        ∫    

                                        

where, (       )  has been rescaled before being introduce in (2.5) so that ∫(       )        according 

to         (       )         (         )  The resulting system of equations for the nodal values at 

the        step is solved with the Gauss Seidel method. In order to initiate the iterative scheme, one 
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can take as (        ) the values obtained in the previous time step, that is to say, (        )     The 

scheme finishes assuming the values for the     time level given by      (        )   
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