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Abstract.  The reflections of energy dissipation on channel behaviors of a river system are investigated. On the basis of local and 

global opinions of optimality in energy expenses, it is investigated that the relationships between channel geometry, flow velocity, 

channel bed slope, and stream flow conditions in optimal river systems. Expressions for the rate of energy dissipation per unit 

channel area   are derived as functions of cumulative drainage area and river network parameters. Optimal channel 

characteristics are developed that satisfy the opinions of local optimality, and provide constant    throughout the river network.  

It is shown that these optimal channel characteristics are remarkably similar to those of many natural river systems in their 

downstream hydraulic geometry exponents, channel bed slope scaling, spatial distribution of average flow velocity, boundary 

shear, resistance to flow, etc. Optimal combinations of channel downstream hydraulic geometry and basin topography were 

analyzed on data from Ngduari Gorge,Pachmarhi. It is found that ranges of optimality for the combination of the downstream 

hydraulic geometry exponent for width of Leopold and Maddock [1953] (0.32 < b < 0.74), and the channel bed slope scaling 

exponent (-0.65 < z <-0.29), and argue that river networks develop average channel properties within these ranges in order to 

attain constant    throughout the network. It is proposed that the openions of local optimality is a central principle that explains 

the average behavior and adjustment of channel characteristics in natural river systems. 

 

1.   Introduction 

 River networks are dynamic and complex systems with branched structures that reflect a high 

standard of regularity and spatial organization. This regularity has inspired to study the aggregation 

patterns of river networks and to search for fundamental principles that relate their structure and channel 

characteristics. The drainage networks naturally evolve into structures that are most efficient in draining 

their watersheds [Leopold and Langbein, 1962]. Ability, in this context, was associated with work that a 

river network performs in transporting water and sediment, or with the rate and distribution of energy 

expenditure in the runoff process. It was postulated that river systems develop toward a state in which an 

approximate equilibrium between channel form and the imposed water and sediment load is produced 

[Leopold and Maddock, 1953, Andrew Gondie 2013, SinghVijay P. 2003] It was argued that this is also 

a state of minimum energy expenditure [Leopold and Langbein, 1962; Langbein and Leopold, 1964]. 

Concepts of minimum energy expenditure have been applied to theoretically derive the downstream 

hydraulic geometry exponents of Leopold and Maddock [1953] observed in natural river systems [e.g., 

Langbein, 1964; Williams, 1978]. The conjecture that channels adjust toward an equilibrium state in 

which stream power or energy dissipation is minimum has also been successfully applied to numerous 

other fluvial problems [e.g., Chang, 1979; Yang and Song, 1986]. 

 The rivers in equilibrium of optimal energy expenditure has been used to describe the structure 

and shape of optimal river networks and to define a set of principles that govern the evolution of river 

networks to the optimal state [Rodriguez-Iturbe et al., 1992]. In their seminal work, Rodriguez-Iturbe et 

al. [1992] postulated three principles of optimal energy expenditure that define the optimal topological 

structure of a network, as well as its channel characteristics, and proceeded to derive from them other 

important properties of drainage networks. Their work led to the definition and modeling of optimal 

channel networks (OCNs) that exhibit remarkable similarities with river networks extracted from digital 

elevation models (DEMs) in their fractal aggregation structure and other empirical Geomorphological 

properties [Rodriguez-Iturbe et al., 1992; Rinaldo et al., 1992; Ijjdsz-Vdsquez et al., 1993; Rigon et al., 

1993; Sun et al., 1994]. Models of OCNs describe the formation of optimal topological structures by 

minimizing the total rate of energy expenditure. River networks closely resembling OCNs have also been 

obtained without optimizing energy expenditure, using physically based models of water and sediment 

transport in network and catchment evolution [Wilgoose et al., 1989] and models of self-organized 

criticality with a stable landscape dependent on a critical erosion threshold [Rinaldo et al., 1993; Rigon et 

al., 1994]. The principles of Rodrigez-Iturbe et al. [1992] are restated here in the form of a local and a 

global hypothesis of optimality in drainage network evolution. The local hypothesis states that a river 

network adjusts its channel properties toward an optimal state in which the rate of energy dissipation per 

unit channel area is constant throughout the network. The global hypothesis states that a river network 

adjusts its topological structure toward a state in which the total rate of energy dissipation in the network 

is minimum. An important feature of natural river networks is their dynamic nature. River systems 

respond to spatially and temporally variable external driving forces (discharge and sediment load) by 

adjusting their cross-sectional form, bed configuration, channel pattern, and bed slope. In this sense, the 

local optimality hypothesis addresses the short-term adjustment of internal channel geometry and 

roughness in response to short-term fluctuations in discharge and sediment load. On the other hand, the 

global optimality hypothesis addresses the long-term adjustment of the topolog-ical structure of the river 
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network in response to geologic driving forces, continuous erosion, and long-term changes in the runoff 

amount and sediment supply. In addition to external driving forces, there are other constraints that can 

control river network adjustment. It has been argued that a natural river will develop characteristic forms 

(such as average downstream hydraulic geometry) that are relatively stable on an appropriate timescale 

between short-term adjustment and long-term evolutionary tendencies [e.g., Leopold and Maddock, 1953; 

Knighton, 1984, p. 162; Petts and Foster, 1985 Paola Chris, Straub Kyle, Mohrig David, 2009]. In any 

natural river system, fluctuations will occur about the characteristic average behavior in response to 

fluctuations in the controlling variables and the resistance and susceptibility of the river system to change. 

 In this article it is concentrated mostly on the hypothesis of local optimality. It is argued that if 

this hypothesis applies to drainage networks, then it must be visible in the spatially and temporally 

averaged distribution of their channel characteristics (in particular the downstream hydraulic geometry re-

lations of Leopold and Maddock [1953]). The main objective is to develop relations between channel 

properties, discharge, sediment load, and the rate of energy expenditure throughout a river network, and 

from them derive so called optimal channel characteristics of river networks where the energy dissipation 

rate per unit channel area is constant. The results from Nagduari Gorge, Pachmarhis (India) indicate that 

the condition of a constant energy dissipation rate per unit channel area in an optimal river network can be 

attained by a complex interaction of channel geometry, topography, and discharge driving conditions that 

leads to channel properties remarkably similar to those observed in many natural river systems. 

 

2.   Energy Dissipation rate in a River Network 

 Rivers are non-conservative systems. In the drainage process, potential energy of water on the 

hillslopes is transformed into kinetic energy of the flowing fluid-sediment mixture in the river network. In 

this process, energy is dissipated from the system. It is generally accepted that fluvial systems perform 

work (1) against friction at the boundary, (2) against viscous shear and turbulence (internal friction), (3) 

in transporting sediment load and flood debris, and (4) in eroding the channel bed [Knighton, 1984, p. 

54]. However, it is difficult to quantify energy dissipation rates associated with each process separately. 

In most rivers the main source of energy dissipation is due to friction of the fluid-sediment mixture at the 

boundary and can be computed from the power equation [e.g., Yang and Song, 1986; Julien, 1995, p. 42]. 

This section discusses the development of the energy expenditure relation and its application to a river 

network. 

 

2.1. Generated Energy Dissipation by Fluid in Motion 

 The drainage generated power or rate of work done by river flow is a scalar quantity derived by 

the product of the vectors of force and velocity. The non-conservative, dissipative term in the power 

equation for irrotational flow is a volume integral representing the rate at which mechanical energy is 

dissipated from the system (transformed into heat). It is the term that defines the work that the fluid 

element needs to do to overcome friction, and will be called the rate of energy dissipation,       [e.g., 

Molnar, 1996]. After neglecting linear deformation by tension against the bed, banks, or surface, the final 

form of the rate of energy dissipation       due to friction in an incompressible fluid under irrotational 

flow conditions can be expressed as 

                                ∫ [   (           )                                 ] 
              

    

where     are tangential and normal stresses,   are flow velocity components in the respective directions, 

and   is the control volume. To obtain the spatial distribution of the rate of energy dissipation in a river 

network using (1), assumptions need to be made about the flow conditions, as well as about the structure 

of the river network. 

 

2.2.   Assumption to a River Network 

 Assuming one-dimensional flow in the   direction leads to          Neglecting the effect of 

secondary flows is appropriate in the context of this study, where the large-scale behavior of a river 
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system than in describing detailed hydraulics in a particular river cross-section. Transversal shear stresses 

are induced by secondary flows; therefore       (for irrotational flow                       Equation (1) then reduces to 

                                                                    ∫ (                 )   
                                       

 

Thus the rate of energy dissipation is related with bed and bank shear stresses, and with gradients of the 

velocity field in the vertical and horizontal directions. The product of these two terms, integrated over a 

control volume, gives the energy dissipation rate under given conditions. 

 

 A river network of Nag Duari Gorge consists of a series of rectangular channel links of different 

lengths, widths, and flow depths. Equation (2) can then be applied to any one of these rectangular channel 

links. In each link the bed shear stress     and the bank shear stress     are equal to an average boundary 

shear stress acting on both bed and banks, and that the velocity gradient near that boundary is equal to the 

vertical velocity gradient. Most energy dissipation occurs in a boundary layer of depth   and that within it, 

shear stress remains constant and equal to the average boundary shear stress     under these assumptions, 

(2) reduces to                                                            ∫                
                                                      

         

where    is the energy dissipation rate of a fluid-sediment mixture in motion in link      and    are the 

channel link length and wetted perimeter, respectively; and     is the flow velocity as a function of the 

boundary layer. The depth of this layer   can be defined by the flow depth at which the actual velocity      equals the depth-averaged velocity    Then (3) can be approximated as 

 

                     (4) 

 

This assumption is important to the practical application of the energy dissipation theories to river 

networks. A depth-averaged velocity is fairly easily defined and determined from discharge and cross-

sectional area, whereas a complete velocity distribution at every point in a river network is not. 

 Under uniform flow, boundary shear stress can be determined from 

 

                    (5) 

 

where    is the submerged specific weight of the fluid-sediment mixture,    is the hydraulic radius of the 

link, and   is the link channel bed slope. The energy dissipation rate    then becomes 

 

                    (6) 

 

where   is discharge. All variables are particular to the studied link    the total energy dissipation rate    in a river network composed of   links, is then                                                                     ∑   
                                                                                           

 

 The effect of sediment transport on energy expenditure in (6) is in the form of added weight to 

clear water. The fluid-sediment mixture then has a submerged specific weight 

 

        [             ]      [         ]   (8) 
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where   is gravitational acceleration,   and    are the mass densities of water and sediment,   is the 

volumetric sediment concentration, and   is the specific gravity of sediment        ⁄    the specific 

gravity of quartz particles submerged in water is approximately equal to 2.65). Commonly, sediment 

concentrations are too low to add significant weight to the fluid-sediment mixture. However, sediment 

transport also affects the velocity profile in a river section and therefore the depth-averaged velocity in (4) 

[e.g., Parker and Coleman, 1986]. 
 

3.   Openion of Optimal Energy Expenditure in River Networks 
 Rodriguez-Iturbe et al. [1992] show that under certain assumptions, a joint application of 

optimality principles that relate the topological structure of a river network and its individual elements 

with the rate of energy expenditure in the system as a whole and each of its elements can be sufficient to 

explain the internal organization and the tree-like structure of a drainage network. The three principles of 

Rodriguez-Iturbe et al. [1992] are restated in this study as the following local and global optimal energy 

expenditure hypotheses. 

 

Local optimal energy expenditure: A river network adjusts its channel characteristics toward a state in 

which the rate of energy dissipation per unit channel area    is constant throughout the river network 

. 

Optimal energy expenditure: A river network adjusts its topological structure toward a state in which 

the total rate of energy dissipation   in the river network is minimum. 

 

 The local and global optimality define the optimal condition of a river network. Concentration on 

the hypothesis of local optimality as it is applicable to adjustment of channel geometry. 

 In this section it is generalized the results of Rodriguez-Iturbe et al. [1992] to river networks with 

variable velocity and roughness, and discuss some implications of this generalization on total energy 

expenditure. 

 

3.1.   Velocity and Roughness in an Optimal Network 

 Rodriguez-Iturbe et al. [1992] state that the rate at which energy is expended due to friction of the 

fluid with the boundary and channel maintenance in a channel reach may be written as 

                                                                                                                                                  

     

The first term on the right-hand side in (9) is the rate of energy expenditure due to friction with the 

boundary, with    as a resistance coefficient representing a measure of total roughness of the channel 

system. This term is identical to (6), with    related to the Darcy-Weisbach friction factor   under condi-

tions of no sediment transport as          The second term in (9) represents the rate of energy 

expenditure involved in the removal and transport of sediment which would otherwise accumulate in the 

channel. It has the form of a bed load sediment transport equation, with constants  and   depending on 

the soil and fluid properties. Rodriguez-Iturbe et al. [1992] assume that total roughness throughout a river 

system is approximately constant and apply the local optimal energy expenditure hypothesis of a constant 

energy dissipation rate per unit channel area 

 

                              (10) 

 

to conclude that in an optimal river network, average velocity will be constant. They therefore limit their 

optimal river networks to those where roughness and flow velocity are constant. 

 It is specified that flow velocity, channel roughness, and geometry are inter related. It is observed 

that one neglects the channel maintenance term and allows channel roughness and velocity to vary, it 

follows from (10) that the local optimality opinion is satisfied when 
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                       (11) 

 

This observation describes an expanded class of optimal river networks by including networks with 

variable flow velocity and roughness. It is essential to recognize this interconnectedness of flow velocity 

and channel roughness throughout the network in the context of the local optimal energy expenditure 

openion. 

 The global optimal energy expenditure hypothesis requires that in an optimal river network the 

total rate of energy dissipation    be minimum, which in turn implies that the rate of energy dissipation in 

every link    is minimum. Minimizing (9) by letting            led Rodriguez-Iturbe et al. [1992] to 

the following scaling relationships between optimal channel depth, width, and discharge throughout the 

network: 
                          (12) 
 
The measuring exponent 0.5 for both the optimal channel depth and width is a consequence of assuming 

constant velocity and roughness in the river network. 

 The effect of a consistent trend in velocity on the measuring exponent in an optimal river network 

can be shown by manipulating (9) and neglecting the energy term associated with channel maintenance to 

obtain 

                 [    ]        [    ]    (13) 

 

 According to (11), the term in brackets in (13) representing a function of channel roughness and 

velocity is constant under the local hypothesis of optimal energy expenditure. Let us assume that average 

flow velocities in the river network exhibit a downstream trend with discharge of the form 

 

                (14) 

 

where   is discharge of the same frequency everywhere in the network and   is a constant for the 

network [Leopold and Maddock, 1953]. Then minimizing    generalizes the scaling relationships between 

optimal channel depth, width, and discharge of Rodriguez-Iturbe et al. [1992] to 

 

                                   (15) 

 

In a river network that satisfies the local optimal energy expenditure opinion of a constant energy 

dissipation rate per unit channel area, the measuring relationships between channel depth, width, and 

discharge can be different from 0.5 (less than 0.5 assuming an overall increase in velocities downstream). 

Observations of average flow velocities in natural river systems show   ranging mostly between 0 and 

0.3 [Park, 1977]. Although it is neglected that the channel maintenance term in (9) in the above analysis, 

it can readily be shown that the developed scaling relationships in (15) also hold for the condition, where 

the channel maintenance term would be constant throughout the network (which is not a bad assumption 

for stable natural rivers). It should also be pointed out that a rectangular channel cross section and a 

constant width-depth ratio throughout the river network has been assumed       However, the scaling 

relationships in (15) also hold for trapezoidal cross sections where the width-depth ratio can vary 

throughout the network as a function of the bank declination angle [see Rodriguez-Iturbe and Rinaldo, 

1997, p. 256]. 

 

3.2.   Models of Optimal Channel Networks 

 By adding the rate of energy expenditure from all links of the network, the total rate of energy 

dissipation in a river network      Assuming a scaling relationship between channel bed slope and 

discharge of the form [Langbein and Leopold, 1964; Carlston, 1968] 
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                (16)  

 

            
                                ∑   

         ∑          
 ∑   

                                                                  
 

Where   is the energy exponent equal to  

        ζ        (18) 

 

According to the global optimal energy expenditure hypothesis,    should be minimum in the optimal 

network. Therefore the topological arrangement of network links that drains a given area with the lowest 

possible value of     is defined as the OCN for that drainage area [Rodriiguez-Iturbe et al., 1992]. There 

are many topological solutions to this minimization problem. The model in (17), together with the 

hypothesis of global optimality, has been used to simulate OCNs with topological characteristics and 

properties very similar to natural river systems (drainage area is commonly used as a surrogate for 

discharge) [e.g., Rinaldo et al., 1992; Ijjasz-Visquez et al., 1993; Rigon et al., 1993; Sun et al.,1994]. 

 The energy measuring exponent   connects local energy expenditure principles with the overall 

topological structure of the OCN [e.g., Sun et al., 1994; Troutman, 1996]. On the basis of (15) and the 

hypothesis of local optimality, it can readily be shown that for the specific condition      
 

                      (19) 

 

The role of the energy exponent   has been intensively studied in the OCN context. The original OCN 

definition assumes constant velocity     and therefore               and ζ= ─0.5 in the 

context of our study,       provides a threshold in the distribution of average flow velocity in the OCN. 

For       velocity increases downstream, and for      , velocity decreases downstream. 

 Rinaldo et al. [1992] and Rigon et al. [1993] indirectly relax the assumption of constant velocity 

in a network by simulating optimal networks using exponents   different from 0.5. On the basis of 

numerical experiments, Rinaldo et al. [1992] conclude that OCNs with      tend to be visually 

characterized by similar aggregation patterns. For            they did not observe Hortonian features 

in simulated OCNs. The limiting case of      does not give any preference to aggregation and 

minimizes total channel length in the OCN context. The case of       on the other hand, leads to 

directed networks and minimizes the mean link length to the outlet in the OCN context. From what it is 

shown in (18) and (19), this would require slopes independent of discharge and a decrease in flow 

velocity downstream. Such conditions are indicative of unchannelized hill slope runoff, which was also 

concluded by Rigon et al. [1993] from their simulations of OCNs. 

 Troutman and Karlinger [1994] estimated the exponent   from river network data using a two-

parameter Gibbsian probability model to characterize the spatial behavior of river networks. Their results 

give an average         and there seems to be a tendency for   to be greater than 0.5 even at scales 

greater than the hillslope scale. Analytical solutions were obtained for the global minima to equation (17) 

under specific conditions [Maritan et al., 1996; Colaiori et al., 1997]. Results show that natural river 

networks tend to be rather in states of local minima, and the proposition was made that nature chooses an 

approach of "feasible optimality" with a long memory in the evolution of its landscapes. Worse energetic 

performance, yet better representation of natural networks by OCNs in states of local optima, may imply a 

role of geologic and other constraints in the evolution of river networks [Rodriguez-Iturbe and Rinaldo, 

1997, p. 353]. In any case, the energetic performance and structure of river networks remain interesting 

research topics 
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4.  Applying the Hypothesis of Local Optimality 
 It is proposed that in a river network, the local optimal energy expenditure openion governs the 

average distribution of channel geometry. In this section it is  used the downstream hydraulic geometry 

relations of Leopold and Maddock [1953] to describe the variation of channel geometry and develop the 

relation for the energy dissipation rate per unit channel area     It is then used this relation to define the 

condition of local optimality in which    is constant throughout the network. The downstream hydraulic 

geometry exponents for width and depth to be equal (i.e., in general,       
 Consider a river network composed of rectangular channel links, where the energy dissipation 

rate    in a given link is        ⁄  .  Using (6) and (8) under local optimality, it results 

 

            [         ]                (20) 

 

The crucial problem in determining    throughout a river network is in evaluating the network variables 

in (20). These variables describe the driving conditions (discharge and sediment concentration), the 

channel geometry, and the topography of the channel slope. They can be related to the area draining to 

each point in the river network (drainage area is a quantity that is easily defined from DEMs). 

 

4.1.   Distribution of Driving Conditions and Channel Properties in a River Network 
 In hydrologic practice, flood quantiles are commonly related to drainage area. The flood quantile    with exceedance probability ƿ, can be determined as [Gupta et al., 1994] 

 

                       (21) 

 

where   is the area draining to a point in the network,  (ƿ), is a scaling exponent dependent on ƿ, and  ƿ is a network parameter dependent on ƿ but constant throughout the network for a given discharge 

frequency. In the case of simple scaling,  (ƿ) will be independent of the exceedance probability [Gupta 

and Dawdy, 1995]. 

 To describe the downstream variation of channel geometry, it is used that the downstream 

hydraulic geometry relations of Leopold and Maddock [1953]. These simple power laws relating channel 

geometry and characteristic discharge are to be seen as a representation of the average behavior of 

channel geometry: 

                          
                              (22) 

 

where Wƿ and Hƿ are the flow width and depth of a channel at a point in the network corresponding to 

discharge  ƿ  and  ƿ C ƿ  are network constants dependent on discharge frequency, and   and   are channel 

flow width and depth scaling exponents (downstream hydraulic geometry exponents). The characteristic 

discharge has to be of channel-forming and -maintaining significance, with an equal frequency throughout 

the network. 

 Using the relation between channel bed slope and discharge in equation (16) it can be expressed 

that mean channel link slope as a function of drainage area: 

 

                       (23) 

where   and   are network constants. 

The spatial and temporal distributions of sediment concentration in a river network are probably the most 

difficult to  
 

 

 

 



9 

 

Table 1.   List of River Network Parameters Used in the Energy Expenditure Analysis 
 

 

River Network Characteristic 
              

Parameters 
 

 

Discharge 

              
Channel bed slope                                    

Channel flow width                                    

Channel flow depth                                     

Sediment concentration                                

 

estimate. One of the main reasons is that sediment load depends not only on the transport capacity of the 

stream, but also on sediment supply to the stream. A common technique (in supply-limited conditions) is 

to estimate the sediment concentration as a power function of discharge of a given frequency [e.g., 

Leopold and Maddock, 1953; Julien, 1995, p. 229]: 

 

     Cvp                        (24) 

 

Where Cvƿ is the volumetric sediment concentration corresponding to discharge  ƿ , kƿ is a network 

constant dependent on discharge frequency, and   is a constant sediment scaling exponent. A list of all 

network parameters is provided in Table 1. 

 

4.2. Energy Dissipation Rate per Unit Channel Area 

 The rate at which energy is dissipated per unit channel area in any link in the network can then be 

obtained by combining (20) with the expressions for the individual network variables in (21) through 

(24). The resulting    is a function of the drainage area and all network parameters              , 

and can be divided into the energy dissipation component due to water    and sediment      
 

                      (25) 

where     is equal to 

              ƿ                                   (26) 

and     is equal to 

                                                               (27) 

 

The estimation of river network parameters is a cumbersome task and may not be possible for rivers with 

inadequate data. As was stressed earlier, equations (26) and (27) for    are valid for long-term averaged 

behavior, and they are not to be used for prediction in a condition where the joint distribution of the 

network variables may invalidate the operations used to develop the formulas [Troutman, 1996]. 

 

4.3. Minimization Aspects 
 In a network abiding by the local optimal energy expenditure hypothesis, the combination of all 

network parameters is such that     is constant throughout the network. Since     from (25) is a function 

of drainage area, local optimality will require 

 

                      (28) 

 

The above derivative will approach zero as a function of river network parameters. From the perspective 

of local optimality, the "best" set of network parameters is the one for which  
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Table 2. Values of River Network Parameters Calibrated With Nagduari Gorge Data for Maximum   

    Monthly and Daily Streamflow Conditions With Exceedance Probabilities p 
 

 

Parameters 

 

pm =0.5 

 

pm = 0.1 

 

pm = 0.01 

 

Pd = 0.5 
    0.0675 0.1310 0.2247 0.8684      0.949 0.966 0.979 0.950    0.3280 0.3550 0.3772 0.4337   0.317 0.321 0.324 0.320     1.401(10

—3
) 1.507 (10

—3
) 1.457 (10

—3
) 3.0 (10

—3
)   0.249 0.339 0.409 0 

In the calibration, discharge   is in cubic meters per second, depth   is in meters, and volumetric  

Sediment concentration     is in cubic meters per cubic. After Molnár and Ramírez  [this issue.]          is closest to zero throughout the network. Defining an optimality function         as 

 

                                                                                          ∫ | (            )  |                 
 

the optimal set of network parameters             is obtained by minimizing   as, 

                             
                                                                                                                                                                            ∫ | (            )  |                                  
                                                                                                           

 

The optimal set of network parameters              results in optimal channel characteristics of the river 

network. In (29) and (30),    is the drainage area associated with the channel initiation threshold, and    is the drainage area at the outlet of the basin. The optimality function   weighs         with the 

drainage area, thereby giving more weight to the mature downstream sections of the river network. 

The derivative          can be divided into its water and sediment components: 

 

      
                              (31) 

 

Where  

     
               [      ]                           (32) 

                          
 

 

     [           ]                                      (33) 

And where   and    are 

                                
 

 

 

                                                 (34) 
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5.   Channel Characteristics 
 According to the theory in the previous section, channel characteristics can be descibed for every 

river network. It is found that these channel characteristics closely resemble the properties of many 

natural river systems. This indicates that the hypothesis of local optimality may be a central principle that 

explains the average distribution of channel properties in river networks. In addition, examples of the 

interrelationships between the downstream hydraulic geometry exponents and the slope scaling exponent 

in an optimal river network, the analyses were conducted with data from Nagduari Gorge, a small 

experimental watershed (21.4 km
2
) located in Pachmarhis, India. The watershed is well instrumented to 

measure stream flow, sediment load, channel properties, and other watershed parameters [Dongre, 2013] 

and is therefore ideal for an illustration of the application of energy expenditure hypotheses. This section 

contains the following investigations: (1) the optimal variation of channel width expressed by the 

exponent b in the downstream hydraulic geometry relation, (2) optimal combinations of channel width 

and depth expressed by the exponents b and f ,  and (3) the effect of channel topography expressed by the 

exponent z on optimal channel width. 

 In developing optimal downstream hydraulic geometry exponents for the Nagduari Gorge 

network, two different topographic conditions are explored. For the first condition, the exponent z of the 

power function relating channel slopes to drainage area in (23) was set to z =  0.5 ( s = 0.0094, R
2
 = 

0.664). This is the average value of the scaling exponent found by Tarboton et al. [1989] from numerous 

studies of DEM-extracted river networks and is also the value assumed in the OCN studies. The second 

condition was one where the best estimate of z fitted to Nagduari Gorge data was used, z =  0.622 (s = 

0.0105, R
2
 = 0.826). [Dongre,2013]In addition, It is studied, four different characteristic stream flow-

driving conditions. Maximum monthly discharges with exceedance probabilities pm  = 0.5, pm  = 0.1, and 

pm  = 0.01 represented channel-maintaining flow conditions, while mean maximum daily discharges with 

pd = 0.5 represented channel-forming flow conditions. The values of the river network parameters 

calibrated for the different stream flow conditions at Nagduari Gorge are in Table 2.  

 

5.1. Width Exponent b 

 It is determined that the optimal downstream variation of channel flow width at Nagdurai Gorge 

under the local optimal energy expenditure opinions of equal Pa throughout the river network. This 

decipher to finding the width exponent b that minimizes the optimality function         in (30), using 

the data derived river network parameters from Table 2. In order to ensure that the results for different 

flow and topographic conditions are comparable, It is maintained the same channel flow width at the 

outlet of the basin. Therefore when varying the exponent b in search for the optimum, It is continuously 

adjusted the coefficient ap in (22) so that channel flow width at the watershed outlet corresponding to the 

discharge driving conditions was kept constant [Molnir and Ramiirez,  

 Figure 1a shows the downstream variation of Pa for the optimal case and two suboptimal cases of 

the exponent b. The associated downstream variation of the derivative          is shown in Figure 1b. 

The values of the optimal downstream hydraulic geometry exponent b and the associated values of 

constant Pa for every studied case are shown in Table 3. For the case z =   0.5, optimal b was between 

0.488 and 0.506 (depending on the stream flow condition), which is close to the average value observed 

in many natural river systems [Leopold and Maddock, 1953; Carlston, 1969; Park, 1977; Knighton, 1984, 

p. 100]. For the case z =   0.622, optimal b was between 0.347 and 0.369, also within the range of 

observed values in natural river systems [Park, 1977]. The dependency of optimal b on the topography of 

the basin is clearly more significant than the dependency on discharge frequency. The optimal exponent 

also provides a threshold in the energy expenditure distribution throughout the basin. At values of b lower 

than op-  
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Figure 1. (a) Distribution of the energy dissipation rate Pa throughout Nagduari Gorge for optimal and 

suboptimal values of the exponent b for the maximum daily stream flow condition and z=   0.5. (b) 

Distribution of the derivative          with drainage area. 
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Table 3.  Optimal Downstream Hydraulic Geometry Exponents b, f ,  and m; Constant Energy 

Dissipation Rate    at the Outlet of the Basin; and the Ratio       ⁄ for Optimal Networks Developed for 

Maximum Monthly and Daily Streamflow Conditions With Exceedance Probabilities p  and Topographic 

Conditions z  =   0.5 and z  =   0.622 

 

                                     pm =0.5                pm = 0.1                  pm = 0.01         Pd = 0.5 
Topographic Condition z =  0.5 

b optimal  0.488 0.498 0.506 0.488 

f data-derived  0.317 0.321 0.324 0.320 

m 0.195 0.181 0.170 0.192          2.72 4.09 5.70 11.71       ⁄  0.244 (10
—2

) 0.340 (10
—2

) 0.445 (10
—2

) 0.495 (10
—2

) 

Topographic Condition z =  0.622 

b optimal  0.347 0.360 0.369 0.347 

f data-derived  0.317 0.321 0.324 0.320 

m 0.336 0.319 0.307 0.333          1.98 2.98 4.16 8.54       ⁄  0.244 (10
—2

) 0.340 (10
—2

) 0.445 (10
—2

) 0.495 (10
—2

) 

 
 

timal, upstream sections of the network dissipate energy per unit channel area at a lower rate than those 

downstream. At values of b higher than optimal, the process is reversed (Figure 1a) 

 From the optimal hydraulic geometry of the Nagduari Gorge network, it is determined that other 

channel characteristics in the optimal network. For instance, in Figure 2 shows the variation of boundary 

shear stress and resistance to flow with drainage area. Average boundary shear stress T0 is computed from 

(5). Shear stress is higher in the upstream sections of the network but remains fairly constant once 

drainage areas exceed about 6 km
2
 (mean drainage area at Nagduari Gorge is 4.3 km

2
). Bed shear is 

indicative of bed load sediment transport.[Dongre,2012] reports that bed shear stress exceeding about 10 

Pa is sufficient to induce bed load sediment transport at the Nagduari Gorge watershed outlet. The 

computed boundary shear stress at that location in the optimal networks ranged between 5 Pa and 20 Pa 

(depending mostly on flow condition) and will therefore be sufficient to induce bed load sediment 

transport at higher flow stages [Molnar and Ramirez, this issue]. The dimensionless Darcy-Weisbach 

friction factor   was used to describe resistance to flow throughout the optimal network: 

 

                      (35) 

 

Figure 2b shows a general downstream decrease in the friction factor, similar to many natural river 

systems. Sections of the optimal river network draining less than approximately 2.5 km
2 
have    in excess 

of 1.0 (for pm  = 0.01). This would correspond to fairly steep (S up to 0.005) and rough ( d50 up to 100 

mm) gravel bed channels [Bathurst, 1993]. The values of    for drainage areas above 2.5 km
2
 decrease 

from about 1.0 to 0.4 at the outlet of the basin. This would correspond to sand and gravel bed channels 

with moderate slopes [Bathurst, 1993]. Similar results were obtained for the other stream flow conditions. 

In Figure 2b the magnitude of    increases with discharge at a given location in the network because of 

the large channel flow width increase between the two stream flow conditions. In a natural river system, 

higher resistance typical of overbank flow can increase total resistance to flow despite an increase in 

discharge [Bathurst, 1993].  

 The effect of sediment load in the form of added weight to  
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Figure 2. Distribution of (a) average boundary shear stress    in an optimal river network with z =   0.5, and 

(b) Darcy-Weisbach friction factor    in an optimal river network with z =   0.5. 

 

the fluid-sediment mixture on energy dissipation was found to be minimal at Nagduari Gorge. The ratios 

of the energy dissipation rates due to transporting sediment and water       ⁄  
computed from (26) and 

(27) for each condition are given in Table 3. The values of this ratio are less than 0.5% for all studied 

conditions at Nagduari Gorge. 

 

5.2.   Optimal Combination of b and f 

 In the analysis of optimal channel characteristics up to this point, it is searched for the optimal 

width exponent b using the channel flow depth exponent f derived from Nagduari Gorge data. In order to 

generalize our results, It is explored that the optimal combination of b and f that results in constant 

Pa . a n d used a constrained, bivariate minimization procedure to find the optimal combination of b and f 

that minimized the optimality function h (b , f, · · ·). Again, to ensure comparability, it is varied both 

constants ap and cp in the downstream hydraulic geometry relations in (22), so that a constant width and 

depth at the watershed outlet was maintained for the different conditions [Molniar and Ramiirez, this 

issue]. The combinations of b and f that result in optimal networks for flow conditions pd = 0.5 and pm = 

0.01 are shown in Figure 3. Only combinations that provide for an increasing width-depth ratio 
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downstream (which is commonly the case in natural river systems) are shown in the figure (b > f). 

Optimal combinations of the exponents can be found with b ranging between 0.472 and 0.545 for z =   

0.5 and between 0.345 and 0.403 for z =   0.622. The corresponding exponent f varied between 0 and 

0.491 for z =   0.5 and between 0 and 0.366 for z =   0.622. The circles in Figure 3 show the 

combinations with the data-derived exponent f from Table 2. In nature the observed value of the depth 

exponent f has been found to vary between approximately 0.1 and 0.5, with the most probable value 

between 0.3 and 0.4, while the width exponent b has been found to vary between approximately 0.2 and 

0.7, with the most probable value between 0.4 and 0.6 [P rk, 1977]. Our optimality analysis shows that 

within these ranges there can be numerous combinations of these exponents that satisfy the hypothesis of 

local optimality for a given river network, and that these combinations depend on the topography of the 

basin. 

 

5.3.   Optimal Combination of b and z 

 It is clear from the cases in Figure 3 that the value of the optimal exponent b is significantly 

affected by the topography of the basin represented by the slope scaling exponent z.  I t  i s  therefore 

analyzed the arrangement of topography and channel flow width throughout the river network on the 

basis of the local optimality hypothesis. The results for the maximum daily stream flow condition are 

shown in Figure 4, where the relation between b and z represents an optimal condition with data-derived 

channel flow depth parameters from Table 2. Added to Figure 4 is a graph of the expression which 

describes the optimal arrangement between channel width and topography when the effect of channel 

depth on P as well as the sediment transport term is neglected. Then 

 

                                          (36) 

and for    to be constant, 
 

 

Figure 3. Optimal combination of channel downstream hydraulic geometry exponents for width b and depth f 

for topographic conditions z =   0.5 and z =   0.622, and average maximum daily and monthly stream flow 

conditions with exceedance probabilities p.  Circles give the optimal conditions with data-derived values of  f 

from Table 2. 

 

                     (37) 

 

The difference between the optimal combinations and the expression in (37) in Figure 4 shows the effect 

of channel depth on optimal energy dissipation. Equation (37) can also be obtained by combining (18) 
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and (19) and recognizing that z = ζ   ( p) from (23), and it shows the connection between the energy 

exponent 7 and optimal topography and channel geometry. 

 As was pointed out previously, the channel width-depth ratio in our network consisting of links 

with rectangular cross sections increases downstream if b > f. In Figure 4 the width-depth ratio is constant 

throughout the river network (equal to 25.3) when b  =  f =  0.320, and the corresponding optimal z is 

then  0.646. For the exponent b greater than 0.320, the width-depth ratio increases in the downstream 

direction. The value of the ratio is 4 at the upstream end of the river network when b = 0.736, and z 

= 0 . 2 8 8  (the upstream end was defined by the channel initiation threshold At = 0 . 1 8  km
2
). The 

channel width-depth ratio is a function of watershed properties such as silt and sand content, vegetation, 

etc., and therefore provides a natural constraint to the adjustment of the river system. The ratio commonly 

increases in the downstream direction, and natural river cross-sections rarely exhibit width-depth ratios 

below 4 [e.g., Chang, 1979; Knighton, 1984, p. 103]. This limits the range of optimal z value from Figure 

4 to be between  0.288 and  0.646 (shown as the "range of optimality" in the figure). Langbein and 

Leopold [1964] argue that in nature a balance between constant Pa and minimum Pi leads to the scaling 

exponent z being somewhere in the range between  0.5 and  1. Carlston [1968] reports z (assuming e 

(p) = 1) to vary between   0.5 and  0.93 with an average of  0.65. The average value of the slope 

scaling exponent z observed from extensive DEM studies in the channeled fluvial zone was z =   0.5 

[Tarboton et al., 1989; wejjdsz-vasquez and Bras, 1995]. 

 The analysis shows that channel widths and bed slopes are closely linked in the context of the 

hypothesis of local optimality in energy expenditure. Furthermore, they are connected to the total rate of 

energy expenditure in the river network through the energy exponent  .  

 

Figure 4. Optimal combination of the width downstream hydraulic geometry exponent b and the slope scaling 

exponent z for the maximum daily stream flow condition. 

 



17 

 

 
 

Nagduari River with rock knob structure shows a general downstream increase in the friction factor, similar to 

many natural river systems. This would correspond to fairly steep and rough gravel bed channels. 

 

6.   Conclusions 

 In this paper, it is explored that the river networks theory naturally evolve into structures with 

channel characteristics that are most efficient in the transport of water and sediment. The local optimal 

energy expenditure hypothesis of a constant energy dissipation rate per unit channel area Pa and its impli-

cations with regard to long-term average channel properties of a river system in equilibrium were 

investigated. The developed formulas for computing Pa throughout the river network and, using data from 

Nagduari Gorge, showed the interrelationships between downstream hydraulic geometry of channels, 

basin topography, and discharge driving conditions in networks that satisfy local optimality. 

 It is first showed that an expanded class of optimal river networks which includes drainage 

systems exhibiting trends in average flow velocity downstream can be defined. For these systems, channel 

resistance and flow velocity are not constant throughout the networks, but the product      is constant. It 

is  developed that an optimal scaling relationship between average channel geometry and discharge where 

the downstream hydraulic geometry exponents for width and depth are equal, and  

 

showed its effect on the energy exponent and the slope-discharge exponent. 

 On the basis of the optimal energy expenditure analysis conducted with Nagduari Gorge data, It is 

argued that the hypothesis of local optimality is a central principle that explains the average behavior of 

channel properties in river networks. The findings were as follows: 

1. The downstream hydraulic geometry exponents b and  f  required to maintain constant energy 

dissipation rate Pa  throughout the river network are similar to those observed in many natural 
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river systems [Leopold and Maddock, 1953; Carl-ston, 1969; Park, 1977]. Numerous optimal 

combinations of the exponents b and f can be found for different flow and topographic conditions. 

2. The value of the optimal exponent b is predominantly influenced by the topography of the 

watershed represented by the slope scaling exponent z. A range of optimality for both exponents z 

(  0 . 2 9  to  0.65) and b ( 0 . 3 2  to 0.74) was found by analyzing width-depth ratios of the 

optimal channel networks. 

3. Optimal channel characteristics of the developed optimal networks were found to resemble 

properties observed in many natural river systems. Average flow velocity increased in the 

downstream direction, channel resistance in the form of the Darcy-Weisbach friction factor, and 

boundary shear stress decreased in the direction of flow. The function of channel resistance and 

flow velocity     was constant throughout the optimal network. 

4. The effect of sediment load in the form of added weight to the fluid-sediment mixture on the rate 

of energy dissipation Pa was insignificant. It amounted to less than 0.5% in the studied cases at 

Nagduari Gorge. 

5. The results presented above should be seen from two perspectives. First, they describe long-term 

average behavior of channel geometry as expressed by the downstream hydraulic geometry 

relations of Leopold and Maddock [1953] and do not have any predictive meaning at a given 

location in a river network. Constant channel adjustment will prevent the hypothesis of local 

optimality to be satisfied at any given time and space in a river network. The variability of Pa in 

an optimal network is an ongoing subject of study by the authors. Second, both the global and 

local hypotheses of optimality assume that the watershed (river network) is not bound in its 

adjustment. However, the underlying geology, vegetation, human interference, and many other 

factors will also affect the evolution and adjustment of the channel system. Although topological 

adjustment of river networks and the adjustment of channel characteristics occur at different 

timescales, one can visualize their complementary effects in creating optimal combinations of 

topography and channel geometry in a river basin. There are other concerns regarding the process 

of energy dissipation. For instance, it is essentially impossible to budget energy dissipation into 

the individual processes that create it on a river network scale. The determination of the amount 

of energy spent in a river network on overcoming system and surface roughness, transporting 

sediment, creating and moving bed-forms, internal turbulence, etc., remains an interesting re-

search topic. 

  

  To conclude, the efficiency in energy expenditure provides an appealing rationality to the 

behavior of natural river systems and that it can be a very useful tool for studying the structure and 

properties of river networks. 
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