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ABSTRACT 

Transformation of channel at a River confluence is deduced by replacing the hydraulic geometry relationships into 

the continuity equation of flow. Changes in the hydraulic geometry variable   can be described by:             where the subscripts 0. 1 and 2 denote the receiving stream, major, and minor tributaries. The exponent may be 

a system-wide parameter  ̅  or may be computed for individual junctions or).   In the first case,  ̅ is expected to 

be equal to the reciprocal of the exponent of the hydraulic geometry relationship between   and water discharge. In 

the latter case,   may be found by solving the above equation iteratively or from two nomographs presented in this 

paper. My own measurements of widths and slopes in a miniature drainage network, I will show that, although 

average morphometric changes at a junction may be adequately described by x, the behavior of individual junctions 

is highly variable reflecting important variations in    The model may also be used to estimate the hydraulic 

geometry exponent which is assumed to be equal to the median of the   values. This application of the model is 

particularly useful in cases where water discharge is unknown. 

 

Introduction 
 Few investigations have dealt with changes in channel geometry at a river junction. In 

geomorphology, I know of two simple models that describe such discrete changes. First, Miller (1958) 

proposed that changes in channel width   are such that  

                (1) 

 

where 0, 1, and 2 denote the receiving stream, major, and minor tributaries meeting at the junction. The 

value of   usuallylies between 0.5 and 1.0. and Miller reported an average of 0.66 for high mountain 

streams. Park (1975) obtained an average   of 0.83. Miller also applied this approach to describe changes 

in channel depth, in cross-sectional area, in channel slope, and in particle size.  

 Richards (1980) pointed out several shortcomings in Miller's approach. Equation (1) only applies 

when the tributaries have similar widths, and asymmetrical branching implies that   is very large. In 

several cases, Miller's equation predicted a reduction in channel width below a junction. Furthermore, the 

value of   was a function of branching symmetry. Richards suggested an alternative model based upon 

the relationship between channel width and link magnitude  , first proposed by Woldenberg (1972. p. 

12) 

                 (2) 

 

where   is the average width of streams with magnitude 1. The correlation coefficients for this 

relationship are very high. Woldenberg (1972) found that for 4 out of 5 tidal networks        Richards 

(1980) reported that        for the contour crenulated network and 0.92 for the blue line network of the 

River Baingagan (England). Equation (2) is viewed as a continuous relationship; Richards wished to 

estimate discontinuous changes at a junction. Accordingly, he proposed a width ratio that can be 

expressed as a ratio of link magnitudes (Richards 1980) 

     
                  (3) 

 

 This model improves upon Miller's equation (I) because it can be applied to symmetrical as well 

as to asymmetrical branching, and it always predicts an increase in channel width downstream of a 

junction. The evidence presented by Richards (1980) suggests that the magnitude ratio is a poor predictor 

of the width ratio, however. He found that        for the contour crenulated network and        for 

the blue line network of the River Baingagan. Clearly the method of network delineation had an impact 

on the strength of the relationship. The discrepancy between observed and predicted width ratios is also 

explained by the fact that a correlation between two ratios is inherently weaker than a correlation between 

two single variables. Finally, I find that a critical disadvantage of the model is that it considers only the 

receiving stream and the major tributary. The width and magnitude of the minor tributary are completely 

ignored, and since the ratio of tributary sizes is variable, this obviously will introduce a large component  
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of unexplained variation. A model of channel geometry changes at a junction should take all three streams 

into account at once. 

 In this paper, I will develop a general model to describe changes in channel geometry occurring at 

a junction. The model is deduced from the substitution of the hydraulic geometry relationships into the 

continuity equation of flow, and it deals with all three streams simultaneously. I then proceed to show  

how the model can be applied. Although I do not present a comprehensive empirical analysis, our results 

suggest that the model is adequate to describe average changes in channel form but does not account for 

the great variability in morphometric changes at individual junctions. One interesting aspect of the model 

is that it can be applied backwards to deduce hydraulic geometry exponents from the morphometric ad-

justments observed at individual junctions. 

 

A MODEL FOR GEOMETRIC CHANGES AT A JUNCTION 
 At a river junction, the discharge  of the receiving stream equals the sum of the discharges of 

its tributaries 

 

                     (4) 

 

Assuming the hydraulic geometry equations are adequately represented by power functions, as was 

originally stated by Leopold and Maddock (1953), then I have 

 

            
       (5) 

in which   is a hydraulic geometry dependent variable (e.g., depth, width, crosssectional area, slope, 

roughness, velocity). The constant   is the appropriate hydraulic geometry exponent and   is the ordinate 

when     (Leopold et al. 1964, p. 244). By substituting equation (5) in the continuity equation (4), it 

follows that 

 

      ̅                 (6) 

 

where I expect   to be equal to the reciprocal of the exponent for the downstream hydraulic geometry 

relationship between G and Q. Clearly, if x is found directly from the best fit power function then 

equation (6) will only estimate the average change in G for a sample of junctions. 

 

 The critical assumption in this deduction is that a power function (eq. 5) is used as the 

fundamental relationship between a hydraulic geometry variable and discharge. Richards (1976) has 

shown that downstream hydraulic geometry relationships vary according to the pool-riffle sequence and 

to the channel pattern. His results indicated that the coefficients (but not the exponents) of the hydraulic 

geometry power functions differ if I look only at pools or only at riffles. These effects are difficult to 

embed into a general model, and deviations from equation (6) may therefore be systematic. Another 

problem is the sensitivity of the hydraulic geometry exponents to the flood frequency chosen as a basis 

for the relationship. Changes in channel geometry are most likely to be also a function of discharge. 

Nonetheless, for any given frequency of discharge, for example bank full, the model should adequately 

describe the average changes in form. 

 The exponent   may be viewed as a system-wide parameter or as a parameter for one specific 

junction. In the first case,  ̅ is derived from the hydraulic geometry relationships, and it represents an 

average for the whole system. Thus a way of testing the model is to use the hydraulic geometry exponents 

to predict the channel variable of the receiving stream, 

      ̅  (   ̅     ̅)   ̅      (7) 

 

and to compare the predicted  ̅ with observed values      
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At a specific junction, on the other hand, the exponent   would precisely describe the 

 
 
Figure: 1. The positive nomograph describing changes at a junction in channel width, depth, and usually 

velocity. 
 

geometric changes. Given       , and    at a junction, x is found by solving iteratively 

 

      
                   (8) 

 

The junction-specific exponents can be used to investigate changes in form with discharge and/or within a 

stream network. Although it is simple to solve equation (8) with a computer, the junction-specific 

exponent can also be determined from nomographs. These nomographs are particularly useful when only 

a few junctions are studied or as a means of depicting morphometric changes. Deriving the nomographs is 

a simple procedure, but it has to be done for two different cases. 

 The first case, where      is the positive nomograph. Here,          this case would 

normally describe changes in width, depth, cross-sectional area, and velocity inasmuch as each usually 

increases downstream. Given the ratios 

                             (9) 

 

Equation (6) becomes 

 

                    (10) 

 

 

Equation (10) is used to construct the nomograph shown in figure 1. Hence, given   and    an 

approximate value of   is easily found. For   to exist,           and thus      I see on the 

nomograph that for high          can be highly variable, ranging from   to infinity. As   decreases 

so does    and for all   smaller than 0.5.   is less than 1.0. Also, as   increases, the range of   becomes 

restricted to higher values. Symmetrical branching implies that   and   are nearly identical, and this 

corresponds to the diagonal of the graph. Asymmetrical branching    is found in the upper left part 

of the graph. If   and   are both small, major changes occur at the junction; that is.    is much larger than    and    On the other hand, minor changes imply that   and   are large. Accordingly, major changes in 

form at a junction are described by small values of   and minor changes by large    for large   the value 
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of   is difficult to determine precisely, and the solution is impossible where   is equal to 1. For practical 

purposes, however, as   reaches 5.0, the left hand side of equation 10 is very close to 1.0. 

 The second case applies when           this relationship theoretically describes changes in 

slope, perhaps roughness, and occasionally velocity. In this case, I define    and    with respect to the 

largest value    so that  

 

                                 (11) 

    and    also lie between 0 and I,     being always greater than or equal to      Equation (6) thus becomes  

 

 

                       (12) 

 

 
Figure: 2. The negative nomograph describing changes at a junction in channel slope, roughness, and perhaps 

velocity. 

 

To solve this equation   has to be negative; this applies, for instance, to slope and roughness because they 

decrease as discharge increases downstream. The negative nomograph derived from equation (12) is 

plotted in figure 2. In contrast to the positive nomograph, the range of   here is not affected as    
increases. In the positive nomograph small absolute values of   describe major morphometric changes at 

a junction. In the negative nomograph large absolute values of       imply minor changes, that is, a 

low rate of change of   in a downstream direction. From the nomograph I immediately see that when    
and   are equal  

                    is indeterminate. Here again one could set a minimum value for   which ade-

quately describes slow changes in slope downstream. For example,     . Implies that the exponent of 

the slope-discharge relationship is equal to -0-1. 
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Figure: 3. River Bainganga drainage network(study area). Survey of India toposheet 55J7 

 

APPLICATION OF THE MODEL 
 The simple model outlined in this paper has to be correct if the continuity equation of flow at a 

junction and the power function hydraulic geometry relationships are true. Changes in channel form at 

junctions can be estimated by the reciprocal of the hydraulic geometry exponent. To illustrate, I can 

compare the observed   with  ̅  calculated from equation (7), where   is found from the hydraulic 

geometry relationship between  and  . I have measured channel widths at 10 junctions of the River 

Bainganga (figure :3) of  Pachmarhis ( North Satpura). The exponent   of the downstream hydraulic 

geometry relationships between   and    I found that   is .33 for riffles and .35 for pools. Since the 

exponents were statistically ( p  =  .05) undistinguished-able, I will use here a value of .34, and x is 

therefore equal to 2.94. Predicted widths are given by  
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Figure: 4. Comparison of expected and observed widths for the River Bainganga of Pachmarhis (India), based 

on hydraulic geometry exponent, b = .34,  ̅ = 1/b= 2.94. 

 

      ̅                        (13) 

 

 
Figure: 5. Application of the positive nomograph to channel width for the river Bainganga 

 

As illustrated in figure 4. Expected and observed widths are in very good agreement. 

 The model may also be applied to estimate   values and   ̅and thus to determine the hydraulic 

geometry exponents of individual junctions and for the stream as a whole. The width data for the River  
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Figure:6- Application of the positive nomgraph to channel width for a miniature drainage network (Eastman. 

Quebec). The Flag indicates two data points  

 

Bainganga are plotted on the positive nomograph in figure 5. Note that in four cases the width of the 

receiving stream was smaller than the width of the major tributary but larger than the minor tributary. 

Thus, only six junctions are plotted on the graph. Adjustments in width are highly variable as shown by 

the value of   which ranges from 1.1 to a value larger than 7.5. This implies that b derived for a junction 

is also highly variable. Perhaps because of the variability and small sample size the six data points in 

figure 4 do not cluster around the expected (2.94) derived from the hydraulic geometry exponent. A larger 

sample is required to give a reliable estimate of   ̅and its reciprocal, the network value of     
 Given a sufficient sample, however, the monograph may be used to estimate the hydraulic 

geometry exponents in cases where 

 
Figure:7. Comparison between observed and expected widths in a miniature drainage network. The model is 

calibrated using the median junction-specific exponent as the value of          ̅      
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The confluence of River Bainganga and Ghogra in eastern Pachmarhis 
 

Discharges are unknown. To illustrate such an application of the model, I have measured bankfull widths 

and channel slopes in a miniature ephemeral stream network of approximately 45,000   in area. The site 

is located in the eastern Pachmarhis (Satpura-India). Thirty-seven junctions with homogeneous bed and 

bank material were selected and surveyed in the field. Width changes are presented in figure 6. Again, the 
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exponents found at individual junctions are highly variable. The data points are scattered mainly in the 

upper part of the graph, indicating that changes in width at a junction are minor. The median exponent is 

1.8. which suggests that width increases as a function of discharge raised to the .56 power. Using this 

value of   in equation (7) leads to good predictions of the observed channel widths (fig. 7). Assuming that 

the continuity equation holds,   could therefore be estimated by application of the nomograph, in spite of 

the great variability in the values of     
 

TABLE 1 
Variation of the Median Exponent of Width 

Changes with Channel Size for Three  

Junctions in Miniature Drainage 

Width Range (CM) Median Exponent  ̅      

    20 

20-40 

40-80  80 

1.60 

1.80 

1.65 

1.85 

16 

9 

6 

6 

 

 It appears that the variability in morphometric adjustments at a junction is not related to channel 

size or branching symmetry. In table 1, I show that the median   ̅ calculated for different width ranges 

does not change systematically with channel size. I have also looked at the effect of branching symmetry 

on the values of the exponents. Branching symmetry is usually defined by the symmetry ratio       where       Because of the transient nature of several small channels and of their divides at the 

headwaters, it was impossible to evaluate drainage area or link magnitude and to use these variables as 

surrogate measures for discharge. I have defined the symmetry ratio by        
 

 
Figure: 8. Relationship between branching symmetry and junction-specific exponents for changes in channel 

width at a junction as in figure 6. 

 

As depicted in figure 8. The conditional distributions of   given a symmetry ratio, all have similar form 

and do not exhibit any trend. Variability seems to be inherent to the adjustments taking place at a 

junction. 
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 Slope data from the miniature network are reported on the negative nomograph in figure 9. The 

points are scattered widely over the graph. Note that nearly half of the junctions plot on the diagonal of  

 
Figure: 9. Application of the negative nomograph to slope data from a miniature drainage network. 

 

 

 

Figure:10. Comparison of expected and observed widths for the River Bainganga using the width-magnitude 

exponent.        ̅       
 

the graph where the exponent is very negative or indeterminate and that four junctions could not be 

plotted on the nomograph. When a small stream meets a large tributary the mainstream is largely unaf-

fected. Hence,       and the slope ratios        ⁄  and        ⁄ are approximately-equal. Thus for 

an asymmetrical junction equation (12) requires that must be very negative, and therefore z must be less   negative and should approach zero. In cases of extreme asymmetry, the difference between    and   tends to be very small, and   becomes indeterminate. As I see on figure 8, several junctions are in this 

category. As the flows of the tributaries and their slopes approach equality, the difference between    and    increases,    becomes larger than   , and   becomes less negative. Thus symmetry leads to more 

negative values of    For the Eastman data, the median value of   is close to - 1.0 and indicates a high rate 

of change in slope downstream. The long profile of the mainstream is indeed very concave at the 

headwaters where branching is symmetrical. Further downstream, often the difference in slope between a 
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major tributary and the main stream is negligible and branching is asymmetrical. This explains the two 

groups that I see in figure 8; one group is along the diagonal, the other below it. 

 

DISCUSSION 
 The model outlined in this paper is simply deduced from the substitution of the downstream 

hydraulic geometry relationship into the continuity equation of flow at a river confluence. Richards' 

model, on the other hand, is based upon the relationship between channel geometry (e.g., width) and 

drainage network magnitude and it represents an attempt to find an alternative to the classical framework 

of hydraulic geometry. It is interesting to note, however, that network magnitude also incorporates the 

notion of continuity of flow at a tributary junction and  

 

                     (14) 

 

Since a good relationship usually exists between width and magnitude, it is therefore possible to 

substitute equation (2) into (14) and to derive a model analogous to our own  

 

 

                              (15) 

 

Hence, the exponent x in equation (6) may be equal to     or to     depending upon the point of view 

chosen by the investigator.  

 Assuming that water discharge and link magnitude are related by a power function  

 

                 (16) 

 

then the values of   and   are themselves related by  

 

                  (17) 

 

Thus, in order to have a unique value for   and a single model   has to equal 1.0. At a river confluence, I 

know that 

 

                     (4) 

 

                                  (14) 

 

 

 and  

 

                    (18) 

 

 

where   is drainage area. All three statements must be true simultaneously. This implies that discharge 

has to increase linearly with drainage area and link magnitude. Theoretically one expects   to be equal to 

1, and   is therefore unique. Data to estimate empirically the value of are scanty, however. Graf (1975) 

reported that the exponent of the relationship between   and   is very close to unity (1.05). This value is 

derived from several basins from Colorado. I do not know if this statement has universal applicability, 

however. 

 In the Bainganga River, I found that   was 0.34, and   was equal to 0.67 for the blue line network 

and 0.60 for the contour-crenulated network. Both relationships between width and magnitude were very 
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strong while the relationship between width and discharge exhibited a wide scatter. Thus, it appears that   is much larger and more reliable than    First, however, I should see how changes in bank full width at 

junctions would be affected by inserting into the model (eq. 7) the reciprocal of    for the value of  ̅  ̅        Predictions of the widths of the receiving stream for the River Bainganga were computed 

using this new value. As shown in figure 10, the predicted and observed widths are in very close 

agreement, although the data points are slightly more scattered than in figure 3 where predictions Ire 

obtained using the reciprocal of the hydraulic geometry relationship exponent  ̅       

 Despite the large discrepancy between    and   both sets of predictions are adequate. Their result 

is attributed to the lack of sensitivity of the predictions to changes in the value of  ̅ as the best possible 

solution is approached. In order to illustrate that problem, I have computed predicted widths for several 

values of  ̅ and plotted on a graph the sum of the absolute values of the differences between observed and 

predicted widths for the 10 junctions of the River Bainganga as a function  ̅ Although it is not readily 

apparent from the graph in figure 11, the best overall prediction—which minimizes the sum of absolute 

differences—is achieved with an  ̅  equal to 4.05 ( = 0.246). I note immediately that the optimum is very 

insensitive and that the goodness of fit remains nearly constant as x becomes larger than 3.0. Only when  ̅ 

gets smaller than 2.0 do I see a rapid deterioration of the quality of prediction. This rapid increase in the 

sum of the absolute value of the differences is due to the fact that small changes in  ̅ in this range of 

values are translated into large changes in   (and/or ) and therefore affects the downstream rate of change 

in width drastically. On the other hand, as I move from the optimum to the largest values of  ̅, large 

changes in  ̅ cause only minor effects of the value of    (and/or  ). This sensitivity analysis reveals that 

the exponent  ̅ derived from the hydraulic geometry relationship is closer to the optimum than the 

exponent computed from    it is noticeable that  ̅       is 

 
Figure: 11. Evaluation of the goodness of fit between observed and expected widths as a function of   ̅for the 

River Bainganga 

 

Located near the leftmost end of the zone where the goodness of fit remains constant. Using this criterion 

of fit, b provides a better estimate of  ̅ than  . 

 I may be able to explain the discrepancy between the values of   and    It is apparent from the 

graphs published by Richards (1980. p. 243) that the slope of the relationship between  and   is 

inflated. Deviations from the regression line are systematic, suggesting that the data should be separated 



 

 

15 

 

into two equal groups, one for small and the other for large magnitude streams. The value of   for each of 

these subsets is less than Richards'   calculated for the whole set of data. 

 The variability in morphometric adjustments taking place at river junctions also raises important 

questions. According to the model, I expect that each variable will adjust at a confluence in compliance 

with the hydraulic geometry relationships. The complexity of the processes involved when flows are 

merging at a junction could be such that adjustments may occur in several variables at once. The 

hydraulic geometry variables are so interrelated, that if the junction specific exponent of one variable, 

e.g., width, does not behave as expected from the conventional downstream hydraulic geometry rela-

tionship it will cause deviations in the junction specific hydraulic geometry exponents for some or all of 

the other variables. Thus morphometric adjustments at a junction are often incompatible with the 

hydraulic geometry statements unless I also look at all the variables involved in the continuity of flows. 

Junctions may therefore exert an important influence on the downstream hydraulic geometry and partly 

explain the residuals from the relationships. 

 Variable adjustments in morphometric at river junctions may also have important implications for 

the optimal angular geometry models. Roy (1983. 1985) assumed in his optimal branching angle model 

that average changes in channel form could be adequately described by equation (6). He also suggested 

(Roy 1982, 1985) that the variability in junction angles could be correlated with the variability in channel 

adjustments at a junction. In as much as junction angles increase systematically with asymmetry in 

tributary size (Lubowe 1964; Pieri 1984), while morphometric adjustments at river junctions do not seem 

to vary systematically with asymmetry, it would appear unlikely that variability in form adjustments at 

junctions is related to the variability in junction angles. However, the relationship between channel form 

adjustments and branching angles is probably very complex and deserves further attention. 

 Finally, the relationship between radius (r) and discharge is described by the power functions 

relating radius to discharge or to magnitude: 

 

                     (19) 

 

where it is assumed that     and         is a constant. Therefore 

 

                  
      (20) 

For power minimization in turbulent flow,       (Uylings 1977). This implies that velocity increases 

as   , fairly close to the value for rivers. By substituting equation (20) into the continuity equation, I get 

 

                          (21a) 

 

and 

 

                       (21b) 

 

where according to Murray (1926).   Equals 3. Sherman (1981) reviews the biological evidence that       as derived from equation (21). I believe that equation (6) represents a general model of mor-

phometric changes at a junction and it may be applied in any tree where the continuity equation of flow 

holds at a junction. 

 

CONCLUSION 
 The model proposed in this paper seems adequate to describe average changes in form, especially 

channel width, at a river junction. The behavior of individual junctions, however, is highly variable and 

complex. One problem with our model, and with the other models proposed in geomorphology thus far 

(Miller 1958; Richards 1980), is their extreme simplicity as opposed to the complex processes occurring 
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at a channel junction. Despite the fact that our model is deduced from two I will acknowledged 

statements, changes in x and thus in geometry at a particular junction remain unpredictable. 

 The simplicity of this model contrasts strikingly with the complexity of the models developed by 

engineers. Ibber and Greated (1966) pursued Taylor's (1944) approach based on the change in momentum 

at a junction. Owing to the complexity of channel processes at a river junction, they only allowed depth to 

vary and should theoretically that depth should decrease after a junction.  Ko-mura (1973) also derived a 

model of changes in channel depth based on the continuity equation for sediment discharge. These 

contributions always rest upon very restrictive assumptions which limit their applicability to natural 

rivers. Thus far, it appears that none of the existing models in the geomorphology and engineering 

literature is adequate to predict channel changes at individual junctions. One interesting feature of our 

model is its applicability to cases where the hydraulic geometry relationships are unknown. The average 

form adjustment represented by the median junction specific exponent may be used to deduce hydraulic 

geometry exponents for rivers where discharges have not been measured. 
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