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   Figure:1 The Bainganga river of the Pachmarhi is originated from the trap high land 
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ABSTRACT 
Appearance to the analysis of Basaltic river bed profiles of Pachmarhis and equilibrium longitudinal profiles and 

slopes are considered. The first one deals with a solution to the equation of Basaltic rock bed continuity in the 

equilibrium case and the second appearance deals with the application of variation principles. Both appearances 

considered and results obtained for the study of Basaltic longitudinal profiles of streams.  
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     The Drainage system of the Pachmarhis (Crookshank,H,1936, Dongre.N.L.1997,2013) is the most 

conspicuous one  is the high Basalt land scape. All the rivers of the Pachmarhis are originated in the Trap 

high land, notably the Denwa, the Sonbhadra, the Bainganga, (Fig:1) the Dudhi, and the Tawa. The rivers 

are flows parallel to the strick of the hills. The rivers have cut deep channels through the highest 

hills(Fig:2). The rocks are the Deccan Trap Basalt which cap the hilltops on either side, are also found in 

the valley floor (Fig:3).To study the drainage systems of the Pachmarhis, the mathematical models are 

explored which can determine a stability and equilibrium state for the Basaltic river bed profile.(Fig:4) It 

is also necessary to have some information on the stability of the drainage systems over time. In this 

context some methods for the mathematical model  of stable and equilibrium states of some widely 

known natural systems are given; namely for longitudinal river profiles and slope profiles. Two 

approaches for this can be used successfully, the first solving the continuity equation for sediment in a 

stationary case, the second obtained by applying variational principles (calculus of variation). Using the 

first approach, the continuity equation considered from geomorphological points of view. To describe the 

long term evolution of longitudinal river profiles, the continuity equation is traditionally written as 

follows: 

                      
      

(1) 

 

 Sediment discharge is also proportional to gradient              and equation (1) reduces 

to a diffusion equation. In the expression for sediment discharge a different exponent of gradient 

is used within the range       The coefficient   can be expanded as:          where     characterizes the change of physical properties of the sediments and the bed along the 

stream, and    is the function of unit water discharge.  

 

Most hydraulic dependence, as will be shown below, is likely to be reduced to a form suitable for 

the integration of equation (1):         ̅̅ ̅̅ ̅              
    (2) 

 

where                     const,  ̅ is total water discharge,         ⁄  and     are 

respectively the total sediment discharge, and the sediment discharge per unit flow width (unit 

sediment discharge).  

To make calculations for stable and equilibrium river bed and slope profiles, one valid 

procedure is to look for stationary solutions of equation (1) when           more general 

case when       const was considered in the work of Smith and Bretherton, (1972). It 

corresponds to the case of an equilibrium river bed and slope profiles in a region of tectonic 

movements  

 In a geomorphological sense the condition         (height profile marks do not 

change in the course of time) may correspond to two possibilities:  

 



3 

 

I. a completely stable slope profile or channel, with sediment transport equal to      and  

II. a dynamic equilibrium profile characterized by constant sediment discharge throughout          

 

 
Figure: 2, The Basaltic river bed  of  Denwa river 

 

The second possibility is mainly observed in river systems of the Pachmarhis. Their most 

important regularity is the reduction of sediment transport capacity along a channel (the sediment 

discharge of the flow being in a saturated state). This is the dynamic equilibrium profile 

described. While analyzing river beds this profile will be borne in mind. If sediment discharge is 

written in the general form                √   (    )        

                                               (  ) [       √(       )]        (3) 
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where   is the same as in equation (1). For     the analytical solution is then as follows  

      [    (      (  )     )   ⁄ ]        (4) 

 

where       are the constants of integration·.  

 

Thus, to obtain particular forms for the stable equilibrium bed and slope profile the aim is 

to define the functions      (  ) and the parameter  . The results have been obtained for the 

Pachmarhis model, in which, instead of the unit discharges, the total discharges are being considered. The 

proof of this procedure is clear from equation (7) 

 

    
   [     ̅     ]                 (5) 

 

 

  where     ̅           ̅̅̅̅      ⁄             
 

The solution of equation (5) leads to a stable (equilibrium) concave logarithmic profile for the bed  

 

         (    ̅     ̅ )   (  ̅     ̅ )     (6) 

 

 

 This concave logarithmic profile coordinates well with the calculated and measured (natural) equilibrium 

longitudinal profiles of ravines in rocks of the Pachmarhis region. Experiments in the modeling of rill 

erosion  have also shown that after 30 minutes of  the experiment the rills were stabilized, with a constant 

sediment discharge at all cross-sections of the rill expressed as:  

      ̅   
 

where   const;          This expression coordinates well with the expression for a total sediment 

discharge in equation (5).  

It is noted that the equilibrium longitudinal profiles, which are well approximated by a modified 

Bessel function, are equally well approximated by the logarithmic function (equation (6». The analysis 

shows that when the coefficient of the water discharge   increases, the gradient at the     creases 

while that at     diminishes towards zero: i.e. the profile becomes more and more concave. When    increases (for         ) the profiles at the points    , tend to the value       i.e. the profile 

becomes increasingly rectilinear. 

 

 The three works referred to above directly or indirectly confirm the relevance of model (5) in 

some cases. Next, the assumption of a linear increase in  ̅  requires discussion. It is well known that 

total water discharge is proportional to the watershed area    ̅       where   is the coefficient of 

runoff,   is the rainfall intensity (this expression is formally known as the rational method and    in the 

case of an approximately rectangular (watershed) configuration (e.g. a ravine), increases linearly by     direct connection between the length of small channels and their watershed area was obtained.  
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Consider now the continuity equation from a hydraulic point of view. In drawing up the sediment 

balance for an elementary volume (length    and bed width  ), the equation after some simplification 

takes the form:                      (7) 

 

where   is the total sediment discharge    ⁄ related to by the expression       
 

 

 
Figure: 3, The Sonbhadra river have cut  deep channel through the highest hills 

 

Since   varies, equations (1) and (7) can be seen to differ. One additional factor to be considered is that 

with a large bed width variation (along the flow length) in equation (1), the cross-flow sediment 

transportation taken in to account, using the two-dimensional continuity equation                     A prospective model can be made by the closure of equation (7), using equations of 

the forms:  

     ( ̅      )      (8) 

                (9) 

     ( ̅        ⁄ )     (10) 
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                                  (11)  

            (12) 

               ⁄      (13) 

 

where  ̅ is in     ⁄ , and   is the average diameter. Theoretical and experimental studies led to the 

following function for total sediment discharge in rivers with a sand bottom  

               (14) 

 

 

Calculating a stable Basaltic River bed profile using the formula of Chezy-Manning instead of equation 

(11)         ⁄          (15) 

 

and solving the set of equations (9), (14) and (15) together I come to the following expression for     
            ( ̅  )   ⁄       

 

Choosing the function (10) for Basaltic beds.  

      ̅               (16) 

 

I get the expression  

                 ̅               (17) 

 

and equation (7) for        ⁄ (recalling that        ⁄ ) leads to a concave profile       ̅       ̅ .  Equation (2) brings together all the formulae for sediment discharge having the structure          . Thus the solution for stable calculation is reduced to one of defining  ̅        
which is easily done with the help of reference books on average long-term water discharge.  

The approaches which are used while designing equilibrium fluvial system is a model based on 

the continuity equation for sediment in a stationary case can be used for forecasting the non-reversible 

deformation of longitudinal river profiles. Here is a query arises as to what the sediment transport 

capacity will be in order not to disturb the maintenance of an equilibrium bed profile. The basis of the 

problem and the approach to its solution are as follows. Let there be an equilibrium channel bed profile 

which is described with help of the continuity equation in the equilibrium case. The calculated 

equilibrium river bed profiles before and after discharge can be obtained with the final step of the solution 

to determine sediment discharge.  

To deal with the approaches given above, modelling of equilibrium fluvial systems allow in areas 

of tectonic movement and a set of equations is depicted describing the equilibrium profile for each river 

segment. A necessary condition arises that continuity of elevation is maintained between at tributary 

junctions.  

Let us now go through the execution of variational principles to longitudinal equilibrium river 

bed and river profile calculations.  
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First of all the main general statements of calculus of variations are briefly reviewed. The 

calculus of variations (variational principles) is broadly presented in many fields of science. (Courant and 

Hilbert, 1953; Gelfand and Fomin, 1963; Becker, 1964). The calculus of variations is basically concerned 

with changes in functional.  

 
Figure: 4, Columnar joints and  Basaltic River bed of  the Dudhi 
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A functional is a correspondence between a function in some class and the set of real numbers, 

for example    ∫                      For the functional given above the space of admissible 

functions might be those functions which are continuous and have continuous first derivatives on the 

interval a to b. In the calculus of variations a function is stationary when its derivative vanishes. Similar 

ideas are applicable to functionals. These ideas leading to the Euler-Lagrange equation  

                      (18) 

 

which represents a necessary condition for    to be stationary (necessary condition for extremum). The 

functions which satisfy equation (18) are called extremals. Whether the extremal makes the functional is 

not easily answered definitely. Note, that two boundary conditions need be satisfied for equation (18). 

Thus I are led to the problem of an unconventional extremum.  

 

Variations can be dealt with subject to constraints and these are easily handled using Lagrangian 

multipliers. The problem is to make the functional   stationary subject to the condition that the functional 

has a prescribed value     
 

   ∫               ∫               (19) 

 

To derive the Euler-Lagrange equation for a constrained problem (problem for a conventional 

extremum) the Euler-Lagrange equation is derived for the integrand          
                              (20) 

 

The solution to equation (20) has two undetermined constants plus the unknown parameter   (Lagrange multiplier). These are determined by the two boundary conditions and      Thus, the 

problem for a conventional extremum is equivalent to extremization      functional.  

Consider now the application of variational principles to the determination of equilibrium and 

stable states for the fluvial and slope systems. Some general ideas are also on this problem. It may be 

noted that an equilibrium river bed profile are in a state of minimum energy dissipation.  Using this 

technique while analysing longitudinal profiles of rivers in the form of ∫  ̅    Langbein and Leopold 

(1964) arrived at the relationship    ̅   . It was arrived at as an equilibrium solution of the continuity 

equation        ⁄ for sediment discharge   set by equation (2) with          
 

Consider the variational principle applied to the design of slopes which are subjected to minimum 

erosion. The erosion at every point of a slope is known to be a function of gradient and distance from a 

divide (along a horizon position) (Carson and Kirkby, 1972) 

                  (21) 

 

 

In this case the erosion from a whole slope (W) is expressed with the integral (functional) (due to 

a small inclination of slopes                   is supposed) 

      ∫                 (22) 
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 To extremize the integral (functional) the variation principle are used. The problem is solved for 

a conventional extremum by equation (20) when the square (material's volume for a space problem) under 

a slope profile is set by a constant value and also for an unconventional extremum (by equation (18)  

Equation (21) will in the form (Carson and Kirkby, 1972)            ⁄     Typical values 

of parameters m and n lie in the ranges m = (0'4; 0'5), n = (0'5; 2) . The solution of the problem for a 

conventional extremum  

        ∫ [   (     )    ] 
            ∫     

            
                                    (23) 

 

may be obtained in the form:  

    ∫                                   (24) 

 

where       are integration constants. 

 

 

Taking the parameter values          I obtain a concavo-convex profile from equation (24)  

                    (  √  )                     (25) 

 

 The inflexion is at distance            The analysis shows the expression (25) to characterize a 

minimum wash:  

               [                        ]   (26) 

 

For instance, when,            ⁄                  and for wash along a rectilinear slope 

profile            (for which the square under a slope profile also equals        ⁄ is equal 

to                     Thus, when                 ⁄ wash along a rectilinear slope profile 

is nearly minimum           .  

 

The solution of the problem for an unconventional extremum  

      ∫                               (27) 

 

can be obtained in the form 

              ⁄     [              ]       (28) 

 

For instance,                         I obtain a convex profile which causes maximum 

erosion:            The minimum for the set of functions (Figure: 5)  

     [     ]       (29) 
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is obtained when         the concave profile turns into a profile in the form of a cliff edge. Thus, for 

slope profiles subjected to minimum erosion I have an infinite derivative at the point    , which does 

not meet the assumption of small angle. Thus, in some cases sin  in formula (21) should be considered 

instead of tan  , as in equation (3). In these cases the problem for an unconventional extremum is set in 

the form     ∫   [      √        ]                     (30) 

 

The first integral of Euler-Lagrange equation for this problem was obtained as follows  

              [       ]    
      (31) 

 

Only when     an analytical solution of equation (31) can be obtained which is reduced to integral 

taking    ∫ (        )    in other cases the problem is difficult to solve.  

 

 
Figure 5. Set of parabolas 

 

 
 

Figure 6. Set of exponential functions 
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Another approach to the problem solution of equation (30) can include the finding of functional 

extremum  on definite sets of curves. It is then possible to take a set of functions (29) or:    [   (    )           ] (Figure 6). The last set allows us to take a wider range of profiles. The derivative at 

the point x = 0, continuously varying in the intervals                    with a variation of a in 

the intervals         . In the former case I have the set of convex curves, and in the latter I have 

the set of concave curves. Here the rectilinear profile corresponds to     (Figure 6), which follows 

from the Taylor series expansion, at small      (    )                    
The problem (30) with this set of curves is reduced to one of minimizing, with respect to   the integral 

      ∫          [       ]    
  

                       

 

Where  

 

The approaches discussed here and the results obtained can be applied in practice to hydraulic 

engineering works and to the design of equilibrium and stable river beds and slope profiles. 

 

 

List of notations    height,            length of slope or river bed,      space coordinate (distance from the divide),     time,   

Q unit water discharge (water discharge per unit flow width),         total water discharge,         unit sediment discharge,        total sediment discharge, ,        gradient   slope angle   bed width,     average depth,     mean velocity, 
     Manning resistance coefficient   average sediment diameter, L   gravitational acceleration,        erosion (wash) from a whole slope,           erosion at every point of a slope,       exponents of          (  also exponent of      )   Lagrange multiplier   coefficient in R       integration constants   coefficient of runoff 
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  rainfall intensity,       watershed area,        Chezy coefficient,           
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