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In order to explain the Morphological development of the Pachmarhis, it is useful to 

establish a model against which the present landscape surface can be compared.  Since this up 

warp occurs in an area, whose planation surfaces have been warped. It means that any surface 

formed prior to the initiation of the up warp will be distorted as the tectonic deformation took 

place, and the rivers incised into the surface as soon as further uplift continues.  Planation 

however continues so long as there is a period of tectonic quiescence of sufficient duration for the 



surface to develop in between two successive uplifts and as long as the rate of drainage incision 

keeps pace with the rate of uplift along the tectonic axis. 

 

If however the latter becomes excessive the river tends to reverse. Since the Dhupgarh 

surface had a radial slope in relation to the axis, allowance must be made for this; if however it is 

assumed that the slope of this surface was as much as ͵ͷ ݉݁ݎ݁ݐ/ ݇𝑖݈ݎ݁ݐ݁݉݋ the total uplift 

would be ͵ͲͲ݉݁ݏݎ݁ݐ. The lowland by contrast shows an opposite rise.  Thus it would be 

necessary to invoke a shift of the axis of up warping by some ʹͶ ݇𝑖݈ݏݎ݁ݐ݁݉݋ to the south, to lie 

now near the Deccan Trap cliffs.  

 

       Drainage can be expected to develop in an area such as this, where relief barriers can 

be fixed by shallow dips, and where uplift with consequent rejuvenation tends to draw the rivers 

across the east-west structural grain, but the process remains questionable. The water gaps, and 

wind gaps too are sufficiently aligned and independent of the transverse structure to disqualify the 

explanation of regressive erosion and capture, and crest beveling was not as advanced as to allow 

major rivers to swing across the interfluves. It however, seems possible that the drainage evolved 

from a combination of part inheritance and limited superimposition at the close of the Pachmarhi 

leveling, when the southward shift of the axis of up arch assisted in drawing the drainage lines 

across the low relief barriers of the Dhupgarh Surface. It is plausible that the streams were 

inherited from an earlier planation surface, the Dhupgarh surface and the final leveling as a result 

of the pedimentation of the Pachmarhi Surface, when relief barriers were subdued enough for the 

rivers now rejuvenated to be superimposed on the lower and surfaces below. Based on these 

considerations a scheme of events leading to the morpho-evolution of the Pachmarhi has been 

worked out. It is summarized in Table 1.  Stage wise development of the morphology is 

schematically depicted in Figure 1 A, B, C, D, E. 

 

Relict planation surfaces are found to be the most potent guides in formulating the sequence of 

event. In addition they strongly indicate the activeness of the area that had been hitherto regarded 

as a part of an eventless stable landmass which is further corroborated by the(A) presence of 

numerous waterfalls both cascade and other types, wind and water gaps at high elevation, deep 

gorges carved out by perennial streams, numerous springs, Karst-like  topography including 

subterranean drainage, caves and caverns etc; 

 

Pachmarhi morpho-evolution chronology denudational chronology 
 

Stage Characteristic Feature                 Probable age 

6 Development of areas locally lower than the lowland 

surfaces; slow intermittent uplift of the area. 

Pleistocene.   

5 Development of lowland surface into extensive plains with 

outliers of the upland surfaces; discordant drainage lines, 

extensive rivers capture; surface develops along a feather 

edge by scarp retreat as basal. 

Pliocene to Pleistocene.   

4 Development of 1,100 m upland surface as intermont plane 

by retreat of the residual scarps of 1,300 meter plane; 

landscape with early mature features; river development 

advanced; centripetal slope with fringing uplands result in 

fairly co-ordinated drainage with ancestral drainage lines; 

persist slow uplift in recurrent phases resulting in several 

ledges on the scarp. 

Oligocene. 

3 Resurrection of the pre-trap surface, initiation of 425 meter Lower Miocene (?)  



planation phases; rivers develop on either side of the major 

axis of up-arching ; initially unstable                              

to Lower Eocene.   

2 Land surface covered completely by the Decan Trap plateau 

landscape drainage on the Cretaceous plane completely 

covered intrusion of dolorite dykes                                     

Lower Cretaceous to  

 

Lower Tertiary 

1 Formation of the Pre-trap Cretaceous peneplane on the 

Gondwana sedimentaries. 

 

 

 

 
 

 



 

 
 

 

 
 



 
 

 
 



 
 
Figure 1. A,B,C,D,E Block diagram of Pachmarhi altitude matrix by program ISE1174/15P4/MATCON , 

to illustrate the major stages in the evolution of the  Pachmarhi(A) Satpura Basin Gondwana Resurrection: 

The Gondwana exhumation ... Post-Trap uparching resuits in the denudation and progressive uncapping of 

the Deccan Traps. Streams flow radially around the E-W trending axis,(B) Dhupgarh Planatlon: The upland 

Landscape Cycle begins ... equivalent to the Dhupgarh planation. This surface was diversified by relative 

amplitudes of relief due to incomplete planation. Drainage lines persist with very little adjustment to 

structure,(C) Pachmarhi Planation: Regional uplift results in incision of streams into the Dhupgarh Surface; 

a new cycle is initiated, which evolved into the Pachmarhi Surface. The land surface reaches a stage of late 

maturity, with fringing Dhupgarth remnants, Drainage is still radially disposed around the Upland 

residuals,(D) Bijori Planation Begins : More uplift and differential warping (?) ... the tectonic axis shifts 

south by some 24 kilometer, a new cycle of planation is initiated alone the feather edge of the north dipping 

Upper Gondwanas on which is developed the Upland Landscape. The resurrection of the Lowland cycle is 

started by the retreat of the Pachmarhi scarp. Drainage further isolates the Upland remnants and by 

superimposition, discordance sets in as in the major rivers such as the Denwa and Sonbhadra,(E) Bijori 

Planation: Scarp retreat advances, developing the Bijori Surface at the expense of the Upland Landscape.  

 

 
Figure 2 . Present Position : Further uplift, results in wide spread incision of streams and head ward erosion 

of tectonically advantaged streams results in advanced disarticulation and modification of the extended 

drainage net- work.( Block diagram of Pachmarhi altitude matrix by program ܧܵܫͳͳ͹Ͷ/ͳͷܲͶ/ܯ𝐴ܱܶܰܥ ) 
 



(b) Complete absence of flood plains. 

 

Thus above features bear testimony to the youthful character of the area. Further 

expansion of the Lowland Surface is particularly noticeable. In this connection possibly a 

southward shift in the axis of the domal up-arching resulted in the warping of the Upland surfaces 

and caused the limited superimposition and discordance of the major drainage lines, which lead to 

the formation of the Lowland surface (exhumed by the uncapping and denudation of the Deccan 

Trap Lavas) evolving at the cost of Uplands, being consumed due to scarp retreat.  

 

Parallel scarp retreat 

 
 A survey of published literature pertaining to scarp retreat, notably the studies of Budel 

(1965) Budel (ͳͻ͹͵), Cotton (ͳͻ͹͵), King (ͳͻ͹͸), and Ollier (ͳͻ͸Ͳ) shows that in humid 

climates scarp-retreat is pronounced where stream flow is forceful and the denuded material is 

transported quickly away from the pediment (foot-slope) by a basal stream. In the pachmarhi 

area, stream flow is forceful, in fact the entire section of the Denwa river from Binora to 

Sukhadongar is pot-holed (Figure 3) and characterized by numerous rapids. (Figure 4)The present 

phase of stream erosion seems to be one of incision. This results in over-steepening of the scarp-

foot slopes and hence should accentuate scarp-retreat, as evident from the pedologic observations 

given below. 

 

 So far the discussion has been confined to the processes of recession of scarps.  It is now 

important to digress from processes that cause scarp retreat to examine evidence that supports 

parallel retreat of the Pachmarhis Scarp. Several lines of evidence from field and map observation 

indicate parallel scarp recession.  Of these, the following two are deemed most important. 

 

A. Pachmarhi sandstone outliers: These sandstone outlier (Buttes) are often aligned along trends 

that are parallel to the present margins of the Pachmarhi Plateau.  Examples of these outliers 

are the Mankideo, Barghat, Kedardeo (Figure 5) Burimai etc.  The farther they are from the 

scarp smaller is their areal extent and elevation.  This indicates increasing relative age of 

isolation from the plateau and the once continuous extent of the Upland Landscape.  Using 

these outliers, to reconstruct the Pachmarhi Surface by extrapolating form lines and contours 

across the intervening embayment. 

 

B. Rectangular drainage pattern : Namely, the similarity of drainage patterns far away from the  

present scarp to those present very near the scarp and to those present on top of the Pachmarhi 

plateau. The rectangular stream segments are laid-off herringbone fashion to the north-south 

drainage divide developed on the Lowland Landscape. The Denwa now at the base of the 

Pachmarhi scarp is parallel to the Katha and  Bija rivers successively south from the Denwa. 

In similar fashion, the Bori Nadi now at the base of the scarp is parallel to the Sagum, Kabra, 

and Sonbhadra rivers successively south. The ܧ ܰ ܧ  aligned interfuves to the above streams 

are often straddled by the Pachmarhis sandstone outliers described above. (Figure 6).East-west 

segments are longer and better developed and appear to be parallel with dolerite dykes (Auden ͳͻͶͻ) and a major joint trend that characterizes the entire Satpura Basin. It is possible that the ܧ ܰ ܧ trending pre-existing “Weak zone” is readily exploited by streams draining the plateau, 

and in due course of time are superimposed onto the Bijori Shales (Lowland Landscape) as the 

scarp retreats.  This results in the rectangular drainage pattern with ܧ ܰ ܧ elongate segments 

being parallel to the scarp. 

 



 
 

Figure 3. Numerous Potholes are in the Pachmarhis formed by Denwa River. 



 
                                  

Figure 4. Denwa river, characterized by numerous rapids during its drainage course. 



 
 
Figure 5. The Mankideo, Barghat, Kedardeo outlier (Buttes) is often aligned along trends that are parallel to 

the present margins of the Pachmarhi Plateau.   

  

The question now is to explain the presence of the major drainage lines that are 

discordant with not only the scarp, but the entire structural grain of the Satpura Basin. In fact, the 

Denwa, Sonbhadra, Dudhi, and Nagdwari etc., originate in the Lowland Landscape south of the 

Pachmarhi Scarp, and flow directly into the Pachmarhi Plateau, across the axis of the Satpura 

Dome and emerge north to debouch into the Narmada rift valley.  These major rivers could hardly 

be superimposed from higher planation levels, for there is nothing to suggest that the Deccan 

Traps Plateau to the south of the study area was ever higher than the Satpura Dome.  Moreover, it 

does not seem possible for a minor stream on the northern flanks of the dome to be drawn across 

the domal axis by head ward erosion and capture streams on the Lowland Landscape.  The only 

plausible hypothesis, and one that fits the field evidence is that the major streams antedate the 

domal uplift and were able to maintain their courses across the uplift to the local base level in the 

Narmada river rift valley. 

 

 From the moment the streams were initiated, they have laterally planated and vertically 

eroded the valley they occupied as a function of the rates of uplift, changes in local base level or 

presence of contrasting lithologies of differing resistances to erosion (Verma,ͳͻ͹ʹ) .  The 

recurrent and often spasmodic nature of uplift and stillstand in the Pachmarhi area has been 

preserved in the “stepped landforms”. (Venkatakrishnan, ͳͻ͹ͷ)  Venkatakrishnan ͳͻ͹͹).  The 

recurrent nature of tectonism in Central India, especially along the Narmada-Son lineament 

(Choubey, ͳͻ͹ͳ) has recently been documented in geophysical studies as well (Qureshi and 

Warsi,ͳͻͺͲ) 

 

Some field examples 

 

 The Narmada rift valley has acted as a rapidly falling and rising local base level to 

streams that drain into it  Dixey (ͳͻ͸ͺ) and Vaidyanadhan (ͳͻ͹͹).  The post- Deccan Trap 

regional slope was to the north into the Narmada rift valley.  Drainage lines established 

themselves flowing northwards possibly due to a greater rate of fall in the local baselevel as 

compared to smaller rates of uplift of the Satpura Dome.  Streams with initially steeper profiles 



(Denwa, Sonbhadra etc.) were able to maintain their course across the recurrent uplift where as 

almost all other streams particularly minor tributaries were defeated.  The incompetent streams 

occupied the structural weak zones that were discussed earlier. 

 

 Present day field evidences indicate that several of the dip-streams on the northern slopes 

of the Satpura Dome, have however, been drawn across the uplift axis to breach initially high 

divides, break free of the scarp, and establish themselves south of the scarp as basal streams on 

the low-land Landscape to undermine the scarp itself.  An excellent example of such head ward 

erosion and stream capture is exhibited by the headwaters of the Nagdwari River near the village 

of Kajri.  The east fort of the Nagdwari (the Jambudeep), on the other hand, has occupied a ܧ ܰ ܧ- weak zone and in the process captured several headwater streams draining the north 

slopes towards Matkuli.  Several similar  examples  can  also  be  seen in Nimdhana, Barkachhar, 

Somgarh, Deogarh,Dader,Bauta, Jhandiwali Paharia, Guriadeo, Phasi, Guttideo, Supdonger, 

Patalkot, Pratapgarh, Chandimai,  Tamia , Kalapahar , Patarkot, HathiPahar, Dhupgarh, 

Belkandhar, Jambudeep and Jatashankar. Mahadeva Peak and Chauragarh Peak are postulated to 

evolve into large outliers near the Pachmarhi Plateau.  In similar fashion the ܰ ܧ -trending anti-

dip segment of the Denwa   eroding head wards should breach the scarp in an area cast of 

Rorighat isolating Kedardeo Pahar and Mankideo Pahar as large outliers separated from the 

Pachmarhi Plateau by the intervening Bori and Denwa drainage lines. 

 

  It is interesting to note that in all the above cases, stream erosion continuously back 

wears the scarp; periodically sandstone buttes are isolated as outliers once the backwearing 

stream presumably grades itself to the Lowland level.  In all these cases the outliers and streams 

are aligned parallel to the associated Pachmarhi Scarp. 

 

Estimate of time of initiation of pachmarhi scarp 

 
 Scarp retreat takes time, and in the study area where recurrent uplift and consequent 

stream rejuvenation has resulted in periodic stream incision scarp retreat was by no means 

uniform.  Rather it can be postulated to have occurred in discontinuous phases of rapid recession 

during periods of still-stand (lateral planation) and slower recession during periods of uplift 

(vertical erosion). To avoid these spatially and temporally varying circumstances, it is necessary 

to calculate recession rate within the constraints of several simplifying assumptions namely that, 

(1) Uplift is continuous and occurs at a constant rate, (2) Scarp recession occurs at a constant rate, 

(3) To achieve (2) above, lithology of Pachmarhi Sandstone should be considered uniform, and 

(4) Climatic regime has more or less stayed uniform and humid throughout. 

 

 Admittedly, these assumptions are geologically uniformitarian. However, for long-term 

calculations of scarp recession one may assume uniformity in the geologic variables, with scarp 

retreat occurring continuously. The present day, Pachmarhi Scarp is at an average distance of ʹͶ ݇𝑖݈ݏݎ݁ݐ݁݉݋ from the outer margins of the Satpura Basin.  This figure is obtained by 

projecting the Pachmarhi Sandstone-Bijori Shale contact and Deccan Basalt-Dhupgarh Surface 

contact south to intersect along the feather-edge of the Pachmarhi Sandstone outcrop. A detailed 

search of pertinent literature yielded a range of recession (parallel retreat) rates varying between 

(a) ͳ ݉݁ݎ݁ݐ/ͳͲͲͲ ݏݎܽ݁ݕ, and (b) ʹ ݉݁ݏݎ݁ݐ/ͳͲͲͲ ݏݎܽ݁ݕ Young. (ͳͻ͹Ͷ). These figures have 

been chosen to represent minimum and maximum values of recession of the Pachmarhi Scarp.  

Extrapolation of this recession range over the estimated ʹͶ ݇𝑖݈ݏݎ݁ݐ݁݉݋ of scarp recession should 

provide a rough figure for the time of initiation of scarp retreat and hence a maximum age (of 

exhumation) for the Bijori Surface.  Thus, at a recession rate of (a) 1m/1000 years and, (b) 

2m1000 years, time of initiation works out at (a) ͳʹ ݉𝑖݈݈𝑖ݏݎܽ݁ݕ ݊݋ (U Miocene) and (b) ʹͶ ݉𝑖݈݈𝑖ݏݎܽ݁ݕ ݊݋ (U. Oligocene) as the time of initiation of scarp retreat. 



 
 
Figure 6 . Drainage patterns far away from the present scarp to those present very near the scarp and to 

those present on top of the Pachmarhi plateau. The rectangular stream segments are laid-off herringbone 

fashion to the north-south drainage divide developed on the Lowland Landscape. 

 

 This figure is no more than an estimate but it yields a valuable number to set landform 

evolution in the Pachmarhi area within an effective time frame. For this gap to be filled, there is 

need for a great deal more of geomorphological mapping and descriptive geomorphology. 

 

The preceding study clearly illustrates the intimate relationships between recurrent 

tectonism, drainage pattern development, and scarp retreat as a result of a complex and hitherto 

little understood interplay of movements in the Narmada rift valley and uplift in the Satpura Hills 

of Central India. Chronological data for scarp retreat and drainage evolution are as yet equivocal. 

But the very periodicity between the continuous process of stream erosion and alignment with 

occasional isolation of sandstone outliers is worth further research. 

 

 A very important time constraint for the beginning of landform evolution within the 

Satpura Basin is provided by  the exhumation of Gondwana sediments due to the uncapping of 

Deccan Trap basalts. This exhumation marking the beginning of the post-Deccan Trap erosion 

cycle probably commenced immediately after the erosstion of Deccan volcanism (+ ͶͲ m.y.?). In 

any event, the pre-Deccan Trap erosion surface called Cretaceous peneplain by Dixey 

(ͳͻ͸ͺ),pre-Trap Surface by Choubey (ͳͻ͹ͳ) and Dhupgarh Surface is probably equivalent to the 

inter-continental Gondwana or African Surface of King (ͳͻͷ͵) and his later classification as the 

Mooreland Surface  (King, ͳͻ͹͸) . It is possible that Dhupgarh planation must have proceeded 

rather rapidly because of the deeply weathered mantle that characterized the Pre-Trap erosion 

cycle. Examples of this material can be observed atop the Chauragarh Peak, Burimai Peak, 

Kedardeo Pahar and along the Deccan Cliffs at Tamia. Once the deeply weathered mantle is 

removed, formation of   subsequent planation surfaces and the Pachmarhi Scarp is much more 

difficult, for erosion has to proceed on fresh, hard rock. 



These time constraints may be used as a means of order of magnitude estimate of 

denudation chronology in the Pachmarhi area, since no better data is presently available.  Crook 

Shank (ͳͻ͵͸) convincingly illustrated the intimate relationship between crustal instability and 

land from evolution in peninsular India. However, the degree to which rivers control and are 

controlled by tectonics, remains to be worked out and the elucidation of the interplay of 

geomorphology and tectonics will require much geologic research and mapping. 

 

Geomorphic analysis of irs -1c pan stereoimage: 

 

 Now-a-day’s the geomorphological mapping is being carried out all over the world 
efficiently by Remote Sensing techniques. The study area is a part of the northern Satpura of 

Madhya Pradesh.  The images are covered in path 98 and row 56 of ܴܵܫ − ͳܥ reference map.  In ܱܵܫ Map, the area falls in between latitude ʹʹ°ʹͲ’Ͷͷ”ܰ to ʹʹ°͵ͺ’Ͷͷ”ܰ and longitude ͹͹°Ͷͳ’Ͷͷ” ܧ to ͹ͺ°ͷͳ’ͳͷ”ܧ (Figure 7, Figure 8). 

 

 Stereoscopic analysis of the images reveal that the morphology is controlled by structure 

and the typical landforms developed are dissected plateau, pediment, linear ridges, joints, mesas, 

buttes and deep erosional escarpments, which are common on basalts. The exaggerated 

stereoscopic view allows identification of various layers of basalt, because of depth perception.  

The landforms noticed here are dissected plateau. The sub-division is based on the intensity of the 

dissection of the terrain and altitude.  

 

Quantitative deterministic model study 

 
We are introducing the notion that events occurring in time could be regarded as having 

varying degrees of memory'. Models for the Pachmarhi, in which events in time are completely 

independent of all previous events were said to exhibit complete randomness; very few situations 

in nature really have this character. A continuous random series, while being useful as a concept 

in an abstract sense, is virtually unobtainable. At the other extreme, all events are entirely 

prescribed and the system under observation is assumed to have an infinitely long memory. These 

are the deterministic models of the type to be examined the Pachmarhi landmass  in this article 

and the methods used for their examination, development and testing are those of applied 

mathematics, especially the differential calculus. Differential equations, with all their 

ramifications and generalizations, are undoubtedly the most powerful tool in applied mathematics 

and it is hardly surprising therefore that the models used take on this form.  

 

It is useful at this point to recall the reasons for adopting deterministic mathematical models 

relating process to response, input to output, and cause to effect. The first is that provided our 

conception of the process under study can be transformed into the language of mathematics, then 

there exists a whole system of techniques and a body of theory for manipulating the relationships 

in the model in an objective and replicable manner. In other words, the procedure offers great 

facility, provided that, we are familiar with the language and technology of applied mathematics. 

This procedure of transforming a problem, performing some kind of operation on it and then 

reversing the transformation is the very essence of mathematical technique, as well as the reason 

for its adoption in geomorphological research. 

 
The great progress of classical physics in the first part of the nineteenth century, 

stemming from Newton's law of gravitation and fully developed by laplace and lagrange, 

depended entirely on simplification and abstraction and rested in the belief that the universe was 

rationally constructed. The fundamental proposition, that abstract models constrained only 



slightly by the limitations of experience were of the essence, still holds today even in those 

sciences such as geomorphology where mathematics has been relatively recently applied. 

 

A second major reason for adopting an applied mathematical approach to process-

response modeling is the adoption of a systems approach in the subject at large. While there is 

still a widespread and elementary view, to some extent propagated in recent literature, that the 

'Systems Approach' consists rather largely of 'organizing' things in boxes or of making broad and 

not very useful statements about interactions, quite the converse is true. This attitude seems to 

stem largely from the difficulties of accepting the engineering and applied mathematical 

techniques in areas, not traditionally mathematically-based, such as sociology and human 

geography. Unhappily, geomorphology still lies in part, at least, in this camp, though books such 

as Chorley and Kennedy's Physical Geography. A Systems approach have gone some way to 

improving the situation. 

 

 
                                     
                                               Figure 7. PAN Stereo Images depicting the Pachmarhis  

       

 Given a simple input or cause or process in a system, this may, be transformed by a 

transfer function into an out effect or response "Mathematically, the most simple system could 

take the form ௧ܻ = .ܥ ܺ௧ where ܺ௧ and ௧ܻ are the input and output respectively at time ܥ ,ݐ the 

transfer function. In a most general fashion, three typical problems arise: (1) given the input and 

transfer function determine the output, (2) given the output and transfer function find the input 

and (3) given the input and output find the transfer function. The systems are usually described in 

terms of differential equations which almost invariably involve a time element and of course, the 

transfer function embodies the characteristics of the system. 



 
 

Figure 8 . PAN Stereo Images depicting the Pachmarhis 

 

The response of the system to various kinds of input is determined by the nature of the 

differential equations which describe it and systems are classified in terms of the order of these 

equations and the typical temporal response they produce. The ultimate goal is to obtain the laws 

which define the system (and hence the transfer function) from completely theoretical 

assumptions, so that the output is defined for any input. Many attempts to define transfer 

functions in the natural sciences have been empirical rather than theoretical in nature. It is often 

argued that they are more concerned with prediction than understanding. At this point we simply 

wish to stress that deterministic and stochastic models meet on common ground in systems 

analysis. 

 

           The third major reason for adopting a deterministic quantitative approach to process 

response modeling is that between them, Newton and Liebnitz provided a special set of 

techniques for dealing with rates of change, the differential calculus. Newton's three laws of 

motion involve the idea of speed and rates of change, whereas Liebnitz was concerned with the 

formula for the gradient of the tangent to a curve. In most geomorphological applications both 

approaches are used interchangeably, the change of height with distance to directly analogous to 

the Liebnitz formulation since the ground slope is a tangent to this curve. The decrease in height 

of a point over time is directly Newtonian. Before using these ideas further to develop differential 

equations of temporal change, a brief digression into the symbols and terminology is necessary by 

way of revision. 

       

A digression into elementary calculus 

 
A basic notion in calculus is the function: a set of ordered pairs such that no two ordered 

pairs have the same first element. Most frequently, these order pairs are an independent variable  ݔ and a dependent variable ݕ this idea is expressed as ݕ = ݂ሺݔሻ where ݂ሺݔሻ formally means the  



 

 
 

 
 

Figure. 9- Graph to show the derivation for a tangent to a curve. 



value of ݕ when ݔ takes on a particular value. This is often generalized so that ݂ሺݔሻ refers to any 

equation in the variable ݔ, and we say’ ݕ is a function of ݔ'. The value of y may be determined by 

two or more variables, e.g. z and x, then ݕ = ݂ሺݖ,  ሻ. Simple functions can be illustratedݔ

graphically (Figure 9). We have a hill slope at the Pachmarhi and we observe two points far apart. 

For each point we could observe the height and distance from the channel at the foot of the slope. 

The gradient of the line is given by  ܾଶ − ܾଵ ܽଶ − ܽଵ⁄  for the point ܳଵ where a and b are the 

Cartesian coordinates of the two points. Obviously, the closer ܳଶ approaches ܳଵ, the better the 

estimate of the slope at ܳଵ. As ܳଶ approaches ܳଵ instead of being a chord, it reaches the point at 

which it is tangent to the curve at ܳ௧. This is the limiting position. 

 

It would then be meaningful to define ground slope by the tangent to that point on the 

curve. This procedure is empirical: we could go out and perform it in the field. Leibnitz however 

assumed that the slope could be defined by a function and found a method for deriving the 

tangent to any point on the curve. Given that height ሺݕሻ is a function of distance from the channel ሺݔሻ how can we derive the tangent to the slope at any point, which is the change of height for a 

small change in x at any value of ݔ? This process is differentiation. In the Liebnitz notation, this 

tangent to the curve is the derivative and is expressed by the notation ݀ݕ ⁄ݔ݀  or ݂′ሺݔሻ. The 

expression ݀ݕ ⁄ݔ݀  is simply an operation for transforming a function into its derivative. If it is a 

function, it too can be differentiated to obtain ݂, ݀ଶݕ ⁄ଶݔ݀  or the second derivative. 
 

The first derivative of the function describing the relationship between height and 

distance is a function describing slope at any point. If this is further differentiated, we have the 

change of slope with distance, which is of course curvature. The mathematicians have developed 

a set of rules for differentiation and a good introduction is given in the inexpensive text by Hilton 

(ͳͻ͸ͺ). In many slope models, relatively simple relationships are assumed between height and 

distance, so that very difficult differential equations are avoided.  Natural slopes are quite 

complex, but by using Taylor's theorem, the derivatives may be obtained for some polynomial of 

a high order (in other words a complicated function of height). Conversely, by knowing the 

values of the derivatives of ݂ ሺݔሻ of various orders at a set of points, we could reconstruct the 

polynomial, which describes the slope, and hence if we wished to use it to predict the slope over 

distances. Such a procedure relies on the fact that the function is smooth i.e. has no relatively 

sharp breaks in it; this assumption is often made for convenience in mathematical slope modeling. 

 

We have used height and distance to review the notion of the derivative, since most 

geomorphologists are familiar with them. The extension of first and second derivatives of the 

height and distance matrix into three dimensions has been especially considered by Evans 

(ͳͻ͹ʹ). 

 

In three dimensions, the height ݖ can be described as a function of map coordinates ݔ and ݕ so the function can be written as ݖ = ݂ሺݔ,  ሻIn this case the process of differentiation has toݕ

take into account the fact that a small variation in z cannot be a function of x alone (except in 

cross-section) or ݕ alone (except in another cross-section at right angles to the first); ݖ is partially 

dependent on x and partially on ݕ. This is also true of the derivative and the procedure for 

differentiation is known as partial differentiation; ݖ is differentiated with respect to x whilst y is 

held constant. The curled 𝜕 is used so that the result will clearly be distinguished from ordinary 

differentiation, so that the two cases are represented by 𝜕ݖ ⁄ ݔ�� and 𝜕ݖ ⁄ ݕ�� respectively. 

Geometrically (Figure 10) 𝜕ݖ ⁄ ݔ��  represents the slope of the curve cut from the surface ݖ =݂ሺݔ, = ݕ ሻ by the planeݕ  If both these are allowed to vary, then the total differential .ݐ݊ܽݐݏ݊݋ܿ 

would represent a change in the z co-ordinate of the tangent plane to the surface. As with ordinary 

derivatives, so with partials we may obtain second, third etc order derivatives represented 



by 𝜕ଶݔ��/ݖଶ etc. Equally, there exists a set of techniques for obtaining the partial derivatives, of 

any order. Finally, suppose that a variable z is a function of two other variables and these in turn 

are themselves functions of another variable, such as time, then ݖ is a function of ݐ and may be 

differentiated with respect to ݐ, then 

 ௗ௭ௗ௧ = 𝜕௭𝜕௫ ∙  ௗ௫ௗ௧ + 𝜕௭𝜕௬ ∙   ௗ௬    ௗ௧ ,                (1) 

 

For example, let ݖ be the height of a point on a former strandline, ݔ be the rate of isostatic 

recovery and y the rate of sea level change; then we could have ݕ = ݂ሺݐሻ and with the derivatives ݀ݕ ⁄ݐ݀  and ݀ݔ ⁄ݐ݀  each the function of a single variable, we have two further partial derivatives if ݔ = ݂ሺݔ, ݔ݀ ሻand so we have a general expression forݕ ⁄ݐ݀ It is no surprise to find that the 

expression for the ordinary derivative occurs relatively rarely in geomorphic model-building. 

Invariably, we are examining situations in which some variables are held constant, not least of 

which is usually the horizontal spatial co-ordinate, for example in slope studies. 

 

Differential equations 

 

Consider a hill slope in which denudation is proportional to the height of a point under 

consideration above a certain base level. Scheidegger (ͳͻ͸ͳ) suggests this elementary model to 

introduce more complex models (given the assumption that precipitation increases with height, 

this is not absurd). The height loss considered will be measured vertically (Figure 11) so that the 

model can be expressed by saying by 

 𝜕௬𝜕௧ = ݕ      ݕ− = height, ݐ = time,               (2) 

 

This is a differential equation of the first order because the equation contains a derivative and the 

derivative is the first derivative of some function. A solution of a differential equation is that 

expression for the dependent variable which does not involve any of its derivatives and which, 

when substituted into the given equation, reduces it to an identity. The solution to this particular 

differential equation is given by 

ݕ  = ଴݂ሺݔሻ݁−௧,                  (3) 

 

which can be evaluated for given values of x after time ݐ If we further assume that some constant 

relates height and rate of removal, we shall have ݕ = .ݔʹ ݁− ௖௧ where ܿ is the constant. 

Reviewing this example, we note the following steps: 

 

1. Conversion of a verbal statement into a differential equation; 

2. Solution of the differential equation to obtain a derivative-free function of a most general 

character; 

3. Specification of the initial conditions; 

where ݕ଴ = ଴݂ ሺݔሻ describes the original land surface which is subject to change. For example, 

suppose =  describes the original landform then the solution is given by , ݔʹ

ݕ  = .ݔʹ ݁−௧,                  (4) 

 

4. Substitution of any real parameter values (݁. ݃. ,ݐ݊ܽݐݏ݊݋ܿ ℎ݁ݐ ݎ݋݂ ݁ݑ݈ܽݒ ܽ ܿ) into the solution, 

and 

5. Examination of the results. 



 
  

 
                     

Figure. 10- Tangential plane to a surface at a point P. The arrow indicates the normal to the plane. 

 



 
 

 
 

Figure. 11- Terminology for the derivation of slope evolution equations (after Scheidegger ͳͻ͹ͳ). 

 



 It is quite important, in reading literature on quantitative deterministic models, to be able 

to identify the separate steps. If this is done, the reader will put himself in a more usefully critical 

frame of mind. Differential equations and their solutions owe their importance to the fact that 

there is a clear correspondence between them and the situation they represent. They usually 

provide a clear and simply expressed model of a somewhat complex physical situation. Step 2 

usually presents most difficulty. Most of the important differential equations of mathematical 

physics have been derived from the process of separation of variables. Their solutions have been 

given special names such as Bessel, Legendre and Mathieu functions and their properties 

described in reference books of mathematical functions. There are about ʹ,ͲͲͲ functions with 

known solutions in all. One consequence of this is the tendency of some workers to cast the 

problem and its differential equations in a form for which the solutions have been developed 

elsewhere. In three examples later, we shall show how this applies to slope studies and the 

diffusion equations, glacier flow and characteristics, and rejuvenation and perturbation theory. 

 

The differential equation described above is of the simplest type. A somewhat more 

complex model is given by 

ݕ��  ⁄ݐ�� = ܽ  .  𝜕ଶ ݕ ⁄ଶݔ�� ,                (5) 

 

which is a second order differential equation (Culling ͳͻ͸Ͳ) in which the change of ℎ݁𝑖݃ℎݐ ሺݕሻ 

with ݐ𝑖݉݁ ሺݐሻ is a function of the local curvature multiplied by a ܿݐ݊ܽݐݏ݊݋ ሺܽሻ. The solution to 

this equation is known from heat-diffusion Problems in physics and is given by and shown in 

(Figure 12)Finally, Hirano (ͳͻ͸ͺ) suggested the model  

 𝜕௭𝜕௧ = ܽ 𝜕మ௭𝜕௫మ −  ܾ 𝜕௭𝜕௫ − ܿ,      z,                (6) 

 

,ܽ ݁ݎℎ݁ݓ)  which comprises a combination of the earlier (′ݏݐ݊ܽݐݏ݊݋ܿ ݈ܽ݊݋𝑖ݏ݋ݎ݁‘ ݁ݎܽ ܿ ݀݊ܽ ܾ

models. The procedure of finding a solution is as outlined above. Once a general solution is 

found, then the parameters may be changed; again the differential equation is of second order. 

The other character which the three models have in common is that all are linear models. This is 

discernible by the fact that none of them involves powers or products of the dependent variable ݕ 

or its derivatives. Linear differential equations are the only ones for which a complete analytical 

theory exists and for which general analytical solutions can be obtained. Most procedures for 

solution of non-linear equations consist of 'linearizing' the equation and then using one of the 

standard techniques for obtaining solutions. 

 

Scheidegger (ͳͻ͹Ͳ) points out that the above models should account for the lowering of 

slopes normal to the surface rather than vertical. The geometry involved leads to non-linear 

equations which have to be solved by different techniques. For example, where 𝜕ݕ ⁄ݔ��  is made a 

function of height, the corresponding equation is 

 𝜕௬𝜕௧ = ݕ [ͳ + ቀ𝜕௬మ𝜕௫ ቁ]భమ
,                 (7) 

 

which is non-linear because the derivative 
𝜕௬𝜕௫is squared. In obtaining solutions the differential 

equation is converted into a difference equation and this is solved on the computer. The results 

for this model are given in Scheidegger (ͳͻ͹Ͳ). 

 



 
 

 
                  
Figure.12- Decay of a vertical cliff, where the change in height with time is a function of curvature (after 

Culling ͳͻ͸Ͳ). 



One may ask what happens at, the crest and at the stream Channel. This raises the last 

general point concerning differential equations, that of boundary conditions. The above solutions 

were general in that (except in one case) the initial conditions and parameters were not specified. 

Obviously, in interpretation we have to have real, particular values for the solutions. In addition 

to providing the initial conditions and any constants we have to specify the conditions at the 

boundaries, i.e. the values which must obtain at two or more values of the independent variable. 

For example, we could assert that in the above situation a boundary condition is that ݕ = Ͳ at ݔ = Ͳ, i.e. base-level is at the foot of the slope. Another one, very familiar to geomorphologists, 

is that velocity is zero at the bed of the stream i.e. when y, the distance above the bed is zero. 

Obviously, the boundary conditions may themselves be time dependent; thus, the value of ݕ at ݔ = Ͳ, the height of the stream channel, could be lowering through time, for example in a simple 

linear fashion (Culling ͳͻ͸͵). Where boundary In a zero order system, using the terminology of 

Grodins (ͳͻ͸͵), the response or output from a process (forcing function, input) is independent of 

time, so that a time derivative is absent from the equation describing the  system. Thus a zero 

order system simply multiplies the input by the transfer function (which in this case is simple 

gain) but does not change the timing between input and output which is one of instantaneous 

response. 

 

Equations of systems 

 

We have already outlined the types of differential equations which exist, partial and 

ordinary, linear and non-linear, and first, second, third order. Linear systems without feedback 

may be defined in terms of the order of the differential equation which describes the system's 

operation with respect to time.  level determined by the hydraulic conductivity and infiltration 

capacity rate of the soil (Figure 13). 
 

 



 
Figure.13- Hypothetical infiltration response to precipitation. 

 

In a second order linear system, the derivative in time is second order in at least one term. 

Typically, it should take the form ܾଵ 𝜕మ௫𝜕௧మ + ܾଶ 𝜕௫𝜕௧ + ܾଷݔ = ܿ,                (8) 

 

The existence of the second order term, taken together with the first-order term, implies 

that the response will be damped to a steady state again, but that with particular values of the 

coefficients ܾଵ, and ܾଷ the system may (a) reach equilibrium like a first order system, or (b) reach 

the steady state level by a series of damped oscillations. An example of this is shown in (Figure 

.14) which illustrates the damping of groundwater inflow to a stream caused by passage of a flood 

wave. Another important case is the passage of a surface temperature wave 

 ሻ into the ground. This takes the general form of a damped sine wave݁ݒ𝑖ݐܽ݃݁݊ ݎ݋ ݁ݒ𝑖ݐ𝑖ݏ݋݌)

curve with depth. So far little application has been made of second order models in 

geomorphology, though there are several areas in which they might be expected. One is in the 

study of sea-level fluctuations, where damping of climatic oscillations and the glacier response 

seems to have been important. Again, the pattern of isostatic rebound might imply the existence 

of a double energy storage phenomenon which is characteristic of these second order systems. 

 

Equations of continuity and diffusion 

 
One important component of equations describing the behavior of continuous matter is 

the requirement that all mass is accounted for. Put at its crudest level, this could be called the 

'what-goes-in-must-come-out' equation. Together with an equation of motion, an equation of 

state, a kinematic condition and the appropriate initial and boundary conditions it provides a 

complete description of the behavior. In all geomorphological situations mass is being moved 

from one position to another, whether soil, water, solid rock, channel debris, or solutes mixing in 

a stream. The conservation of mass is so absolutely fundamental that it forms the core of most 

physical models. It is sometimes called the equation of continuity and has two expressions, one 

representing steady flow of an incompressible fluid and known as the Laplace equation; the other  



 

 
 

 
Figure.14 . The damping of groundwater inflow and outflow to a steady state condition caused by the 

passage of a flood wave in a stream channel (after H. H.Cooper, Jr, and M. I. Rorabaugh ͳͻ͸͵). 



a time-dependent flow, occurring before steady flow is reached and generally known as 

deterministic diffusion. The last term is to differentiate it from probabilistic diffusion. In the latter 

models we expect to find a partial derivative with respect to t ,  and indeed this is the case. 

 

If we imagine a simple cell, whose three axes are ∆ݔ,  we can use (Figure 15) ݖ∆ and ݕ∆

geometry and some simple symbols to obtain the steady-flow model. The mass flow into the left-

hand side of the cube is given by ܯ𝐿 =  is the velocity of flow through that ݒ 𝐿whereݒ𝐿݌ ݖ∆ݕ∆

face, ∆ݖ∆ݕ is the area of the face and ݌ is the density. A similar expression can be obtained for 

the right hand face and the difference between them given by: ∆ܯ௫ = 𝑅ݒ𝑅݌ݖ∆ݕ∆  −  𝐿,                           (9)ݒ 𝐿݌ݖ∆ݕ∆

 

which, taking out the common elements and letting ∆again mean 'difference'.we have: 

 

𝑋ܯ∆  = ∆ሺݒ݌ሻ(10)                           ,ݖ∆ݕ∆ݔ 

 

This is also true in the  ݕ  and  ݖ directions and the notation becomes: 

௬ܯ∆  = ∆ሺݒ݌ሻ(11)                           ,ݖ∆ݔ∆ݕ 

௭ܯ∆  = ∆ሺݒ݌ሻ(12)                           ,ݕ∆ݔ∆ݖ 

 

Now the conservation equation says that: 𝑖݊ݐݑ݌ — = ݐݑ݌ݐݑ݋   ,݊݋𝑖ݐ݈ܽݑ݉ݑܿܿܽ 

 

In this case accumulation is represented by the change in mass of the fluid element, and hence of 

average densities ݌ଵ and ݌ଶ over a short period of time. The equation then is 

 𝑖݊ݐݑ݌– ݐݑ݌ݐݑ݋ = ௫ܯ∆) + ௬ܯ∆ +  (13)            ,ݐ∆(௭ܯ∆

 

that is, the change in flow across the faces in a unit of time, and accumulation = ሺ݌ଵ ଵ݌∆Thus letting .ݖ∆ݕ∆ݔ∆ଶሻ݌− = ଵ݌  −  :ଶ .we have the unpleasant looking equation݌

 [∆ሺݒ݌ሻݖ∆ݕ∆ݔ + ∆ሺݒ݌ሻݖ∆ݔ∆ݕ + ∆ሺݒ݌ሻݕ∆ݔ∆ݖ]∆௧=  (14)                     ,ݖ∆ݕ∆ݔ∆௧݌∆

and if we divide through by ∆ݐ∆ݖ∆ݕ∆ݔ we are left with: 

 ∆𝑣ೣ∆௫ + ∆ሺ௣𝑣ሻ௬∆y + ∆ሺ௣𝑣ሻ௭∆௭ = ∆௣௧∆௧ ,              (15) 

 

If the fluid has constant density, then ݌ is constant and: 

 ∆𝑣ೣ∆௫ + ∆𝑣೤∆௬ + ∆𝑣೥∆௭ = Ͳ,                           (16) 

 

as the values are considered continuous and very small, this relationship can be expressed by the 

partial differential equation: 

 𝜕𝑣ೣ𝜕௫ + 𝜕𝑣೤𝜕௬ + 𝜕𝑣೥𝜕௭ = Ͳ,               (17) 

 

 

 



 
 

 

Figure.15- Notation for development of steady state diffusion model. 

 

 



Notice that there is no derivative with respect to ݐ, as expected. Now velocity is a function of the 

change in velocity potential 𝛷 in any particular direction, e.g. ݒ௫ = 𝜕𝛷 ⁄ ݔ�� and we have 

(substituting in the above equation) the second-order differential linear equation: 

 𝜕మ𝛷𝜕௫మ + 𝜕మ𝜕௬మ + 𝜕మ𝛷𝜕௭మ = Ͳ,               (18) 

 

which is the Laplace equation. The expression for the summed second derivative of a variable in 

three dimensions, i.e. 𝜕 + ଶݔ�� 𝜕 ⁄⁄ ଶݔ�� is given by ∇ଶ called the Laplacian operator, so the above 

equation can be represented by ∇ଶ𝛷 = Ͳ,                            (19) 

 

Various analytical, graphical and experimental techniques are used for showing this basic 

equation. For a unit volume, the expression used above, that velocity is proportional to potential 

gradient ݒ௫ = ܭ− 𝜕𝛷𝜕௫ ,                (20) 

 

is used for flow in soil, where 𝛷 =  ℎ݈ݑܽݎ݀ݕ𝑖ܿ ݐ݊݁ݐ݋݌𝑖݈ܽ. With steady flow in a homogeneous, 

isotropic medium the flow can then be described by Darcy's Law, in which ܭ is the coefficient of 

diffusion. ݒ௫ = ܭ− 𝜕ℎ𝜕௫,                (21) 

 

These conditions are relatively rarely encountered in natural soils, but the formulation is 

important because it allows simple models to be built and forms a bridge to the diffusion models, 

which are also based on the contineuity model, 𝑖݊ݐݑ݌ − = ݐݑ݌ݐݑ݋  Here, the .݊݋𝑖ݐ݈ܽݑ݉ݑܿܿܽ 

basic assumption made earlier, that flow is steady and time independent, is relaxed. The 

concentration of mass in the cube is assumed to vary through time, and of course this change of 

mass represents accumulation or loss. Assuming again matter which is incompressible (density 

remains constant) then the change in concentration depends on the mass-flow into and out of the 

cell through its various faces. If ܬ௫ is the net mass-flow in the ݔ direction, then the accumulation 

is the sum of the net mass-flow through all the faces, expressed as: 

 𝜕௖𝜕௧ = 𝜕𝐽ೣ𝜕௫ + 𝜕𝐽೤𝜕௬ + 𝜕𝐽೥𝜕௭ ,           (22) 

ܿ ݁ݎℎ݁ݓ  = ݊݋𝑖ݐ݈ܽݑ݉ݑܿܿܽ ݊݋𝑖ݐܽݎݐ݊݁ܿ݊݋ܿ = 𝑖݊ݐݑ݌— ௫ܬ ,Now ,ݐݑ݌ݐݑ݋ = − ܿ��ܭ ⁄ݔ�� , where 𝜕ܿ ⁄ ݔ�� the concentration gradient and ܭ is is a diffusion coefficient in the ݔ direction. Similar 

expressions can be obtained for the other directions and if we assume that ܭ, the diffusion 

coefficient, is constant in all the directions, then substituting in the previous equation, the result 

is: 

 𝜕௖𝜕௧ = ܭ− ቀ𝜕మ௖𝜕௫మ + 𝜕మ௖𝜕௬మ + 𝜕మ௖𝜕௭మቁ,        (23) 

 



𝜕௖𝜕௧ =  ଶܿ,          (24)∇ܭ−

 

This important, fundamental differential equation is called Fick's second law of diffusion. 

Together with the condition of continuity from which it is derived, it forms an important core of- 

mathematical geomorphological theory. As the continuity condition has different formulations, so 

too does the diffusion equation and its solutions. However the basic form remains essentially that 

described above. Sometimes the equations are simplified rather than made more complex by the 

fact that they may be taken in only one or two directions; the initial and boundary conditions still 

have to be specified. Once again it is important to note that while the formation of the problem 

into differential equations is the primary field of geomorphological interest, solution of the 

equations, subject to various conditions, is a substantial task. 

 

                                                                         
𝑉𝑅𝑉𝐷 = ሺͳ −  ሻܥ

 . ݏ𝑖ݎܾ݁݀ ݂݋ ݁݉ݑ݈݋ݒ ℎ݁ݐ ݏ𝑖 ܦܭ ݀݊ܽ ݇ܿ݋ݎܾ݀݁ ݂݋ ݁݉ݑ݈݋ݒ ݏ𝑖 ܴܸ ݀݊ܽ ݐ݊ܽݐݏ݊݋ܿ ܽ ݏ𝑖 ܿ ݁ݎℎ݁ݓ 

 

These volumes are expressed in differential terms to obtain an equation for ݕ ሺℎ݁𝑖݃ℎݐሻ in terms 

of ݔ ሺ݀𝑖݁ܿ݊ܽݐݏሻ and the initial slope of the cliff-face  𝛽 .The general solution can be made 

particular by inserting various values of ܽ and ܿ and some solutions are shown in (Figure 16) 

Another continuity formulation for the conservation of ice-mass in an infinitely wide 

glacier is given by: 

 𝜕௤𝜕௫ + 𝜕ℎ𝜕௧ = ܾ,                (25) 

 

 

which is the fundamental starting point for study of the motion of a glacier. In this equation the 

net mass balance (b) is equal to change in the depth of ice flow ሺℎሻ + the change in ice 

discharge ݍ,  while ݔ is the coordinate direction. An almost identical expression: 

 𝜕௬𝜕௧ + 𝜕௤𝜕௫ = 𝑖 − ݂ = 𝑖଴,               (26)  

 

(Eagleson 1970, p. 332) may be used to express continuity in overland flow. If 𝑖 − ݂ =𝑖଴,ݓℎ݁݁ݎ 𝑖 = ݂ ,ݕݐ𝑖ݏ݊݁ݐ𝑖݂݈݈݊ܽ  𝑖݊ܽݎ ݐ𝑖݊݋݌ = 𝑖݂݊𝑖݈ݐܽݎݐ𝑖݁ݐܽݎ  ݊݋ and 𝑖଴  rainfall excess 

intensity, then this is equated with the change in flow depth in channel ሺݕሻ + the change in 

overland flow discharge per unit width of channel ሺݍሻ.A third example of the formulation of a 

continuity expression is from Kirkby's work on hill slope processes (Carson and Kirkby ͳͻ͹ʹ). 

Kirby's expression, for which the terms are shown in (Figure 9) is : ܾ݀݁ݎ𝑖ݐݎ݋݌ݏ݊ܽݎݐ ݏ 𝑖݊ − ܾ݀݁ݎ𝑖݊ݑ ܽ ݎ݁ݒ݋ ݐݑ݋ ݐݎ݋݌ݏ݊ܽݎݐ ݏ𝑖ݐ݈݃݊݁ ݐℎ ݂݋ݎ݌ ݁݌݋݈ݏ ݂݋𝑖݈݁ − 𝑖݊ܿ݋ݏ ݂݋ ݁ݏܽ݁ݎ𝑖݈ ݐℎ𝑖ܿ݇݊݁ݐܽ݁ݓ ݋ݐ ݁ݑ݀ ݏݏℎ݁ݎ𝑖݊݃ ܽ݊݀ ܽ݀݀𝑖ݐ𝑖݁ݏܽ݁ݎܿ݁݀ = ݊݋ 𝑖݊ ݈݁݁ݐܽݒ𝑖݂݁ܿܽݎݑݏ ݈݀݊ܽ ݂݋ ݊݋. 

 

 



 



 
 



 
 

Figure.16- Cliff recession under the models of Bakker and Le Heux (1952) (a) for various initial Conditions 

of the cliff face 𝛽 given slope angle for the screen (a) and (b) for condition of volumetric change (c). 

 

The difference in debris transport (in and out) is expressed as 𝜕ݏ ⁄ݔ�� the change in soil 

thickness due to weathering is ሺ𝜇 − ͳሻܹ, where 𝜇 is a constant similar to Lehmann's ܿ (Lehmann ͳͻ͵͵) and W is the weathering rate; the ground loss in time is given by − ݕ�� ⁄ݐ��  (being negative 

to indicate ground loss). The full expression is then given by: 

 𝜕௦𝜕௫ − ሺ𝜇 − ͳሻ. ܹ = − 𝜕௬𝜕௧ ,              (27) 

 

A second continuity equation in Kirkby's work relates to change in soil thickness, thus in 

differential terms: 

 𝜕௭𝜕௧ = 𝜕௬𝜕௧ + ܹ = 𝜇. ܹ − 𝜕௦𝜕௫,              (28) 

ݖ�� ݁ݎℎ݁ݓ  ⁄ ݐ�� 𝑖ݏ 𝑖݊ܿ݁ݏܽ݁ݎ 𝑖݊ ݋ݏ𝑖݈ ݐℎ𝑖ܿ݇݊݁ݏݏ 
The diffusion equations were first developed for work on heat conduction, and it is 

mainly through soil temperature and glaciology that they make an appearance in geomorphology. 

On a glacier the surface cold wave is transmitted down into the glacier. The annual 'wave' may be 

treated in this fashion, and it can be described by the expression: 

 ௧ܶ = ௦ܶ ݏ𝑖݊ ܹݐ ሺܾ݀݊݋ܿ ݕݎܽ݀݊ݑ݋𝑖ݐ𝑖݊݋, = ݕ  Ͳሻ,            (29) 

 ݁ surface, ௦ܶ the amplitude of the surface temperature wave and 

 𝜕𝑇𝜕௧ = ܭ 𝜕మ𝑇𝜕௬మ, 

 

where ݕ is depth in the ice and ܭ the thermal diffusivity coefficient. Thus if a illusion can be 

obtained, the result will give the temperature at depth ݕ and  me ݐ, expressed as ܶሺݕ,  ሻ and givenݐ

by the equation 
 



 
 

                  
 

        Figure 17. Terminology for formulation of the continuity equation (after Carson and Kirkby ͳͻ͹ʹ). 

 



 



 



 
 

 
Figure 19 . ecay of a mountain under the assumptions of the diffusion model for three successive time 

periods (after Scheidegger ͳͻ͹Ͳ). 



= ଵሺସ𝜋𝐷௧ሻ½
exp ቀ− ௫మସ𝐷௧ቁ,               (30) 

 

where ௧ܶ  𝑖ݐ ݐ ,݁ݎݑݐܽݎ݁݌݉݁ݐ ݏ𝑖݉݁, ௧ܹ , the frequency of temperature change at (Figure19) Which 

when plotted for three values of time yields the results shown in (Figure 19)As was mentioned 

earlier, the continuity equations represent only one of the elements required to describe the 

behavior of matter. The other essential components in most dynamic time models are the 

equations of motion. These take on an even wider variety of forms, and will not be discussed at 

length here. Instead, three interesting and important models for change through time will be used 

to demonstrate the wider aspects and implications, as well as procedures, for this type of 

modeling. 

 
 

 
 



 
Figure.20- The effect of perturbations on surfaces. The upper diagram shows the effect on a smooth slope 

with perturbations in two dimensions parallel to the ݔ −  The lower diagram shows perturbations in .ݏ𝑖ݔܽ

three dimensions. See text for more detailed explanation (after Smith and Bretherton ͳͻ͹ʹ). 

 

Stability analysis 

 

The last example discusses some recent, experimental work by Smith and Bretherton 

(ͳͻ͹ʹ). The problem is to obtain solutions to equations describing the effects of perturbations on 

(1) a surface which is initially fairly smooth, Fixed depths. Notice in (b) how the positive irement 

in temperature at ܶ𝑖݉݁ =  Ͳ reaches ݀ =  ͷ after about 3 months and (2) a ܸ −  channel ݀݁݌ℎܽݏ

system. The procedure is to set up a model using basic continuity laws and  equations of motion. 

This model, represented as usual by partial differentiation equations, is then subject to a 

perturbation. In other words, in the drainage basin, which is everywhere in steady state, the 

surface is instantaneously modified by a small amount. If this small perturbation gradually 

disappears when the model is re-started, then the basin is said to be stable. If, on the other hand, 

after re-starting the model the perturbation (i.e. depression or knick point) begins to grow, then 

the basin is unstable. This technique unfortunately applies only to small perturbations, so that if 

the system is unstable, the assumptions of the technique prohibit us from following through the 

evolution of the system for any length of time. In their first experiment, Smith and Bretherton 

consider perturbations in two dimensions only, parallel to the ݔ −  .(Figure 20) ݏ𝑖ݔܽ

 

In this case, perturbations are removed because an increase in slope causes an increase in 

sediment transport whereas a decrease in slope results in decrease in transport. (Figure 20) One 

implication is that knick points will always be removed by migration 'up-gradient', an observation 

which is supported by flume work. The second experiment relates to perturbations in three 

dimensions. Given their transport law, it is concluded that with a constant form surface which is 

elsewhere concave, there can be no stable channel system on the surface; if it is straight or convex 

there is no instability and channels cannot develop from small perturbations. With a landscape 

combining the two elements, one part (the convex) would inhibit channel development (negative 

feedback) whereas in another area it would be unchecked (positive feedback). 



 
 

Figure. 21 Fig a and b are showing the two steady-state surface of Pachmarhi. These figure are prepared by 

Lagurerres method. 

 

 

This idea of stability and instability through space is quite important, and conforms to the 

idea of a transient spatial behavior comparable to transients in time. It is in the linking of spatial 

and temporal components that the full benefits of deterministic mathematical modeling will be 

reaped. At the moment, as this brief review has shown, the Difficulties of obtaining analytical 

solutions for models which are cast in several dimensions and especially those which are non-

linear are very considerable and, as yet, the amount of three-dimensional analytical modeling is 

very modest. Some of these problems may be overcome by simulation but at present, despite 

these problems, analytical modeling is the most powerful tool of theoretical geomorphology 
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