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_____________________________________________________________________________________ 

 

ABSTRACT - To understand the Pachmarhi geological stage and its 

structure, an analytical method is derived, which gives the elastic response 

of a homogeneous rock layer to two-dimensional distributions of vertical 

displacement applied along its loner boundary. Displacement field, stress 

distribution, and distortional strain-energy density diagrams are presented 

for three types of displacement applied at the lower boundary of  ࢘ࢋ࢚ࢋ thick layers possessing average sedimentary rock properties. 

These three types of displacements are: (1) sinusoidal vertical displacement 

and no horizontal displacement; ( 2 )  an approximate step in vertical 

displacement and no horizontal displacement; and (3) sinusoidal vertical 

and horizontal displacement (horizontal displacement ૢ° out of phase with 

the vertical). Displacement fields and stress distributions for each type of 

applied displacement are nearly independent of the elastic characteristics of 

the layers. The magnitudes of displacement necessary to initiate fracture at 

some point in the layer are small (. ૠ − ૡ.  ) for the three types of 

applied displacement. For applied displacement (1) and (3), the initial 

fracture is a vertical tensile crack at the crest of the fold. For applied 

displacement (2), the initial fracture is either a vertical crack at the upper 

surface or a shear fracture at the lower surface. Displacement fields and 

fracture patterns for scale-model experiments of two problems similar to 

the analytical examples are presented. For a sinusoidal vertical 

displacement, the fracture pattern is a complex zone of normal faults which 

taper inward toward the axis of the fold and die out at depth. For a step in 

vertical displacement, the fracture pattern i s  ( 1 )  a series of reverse faults 

which start vertically at the base of the layer, curve, and intersect the upper 

surface at low angles, and (2) a series of normal faults dipping toward the 

convex side of the reverse faults. Of particular interest are the reverse 

faults which show that vertical movement at depth can generate low-angle 

faulting at the surface. Displacement fields found in the elastic analyses are 

good first-order approximations of displacement fields in the scale-model 

experiments. Points of initial fracture observed in the model experiments 

agree closely with those computed in the elastic analyses. The line of 

fracture for the curved reverse faults in the model experiments can he 

predicted on the basis of the Mohr fracture criterion and the stress 

distribution from an elastic analysis. 

_____________________________________________________________ 
 

Introduction 

 
Much of the Pachmarhis structural deformation is results from differential vertical 

movements of underlying basement rock. This paper describes an analytical and experimental 

investigation of the Pachmarhi, resulting from simple distributions of vertical displacement along 

the base of homogeneous rock layers. A special form of the general theory of elasticity is used in 

the analytical work, and scale models with homogeneous layers of dry sands and clay is used in 

the experimental work. 

 

A purpose of the investigation is to determine: 

 
1. The characteristics of the folding and faulting produced by simple two-dimensional 

distributions of applied vertical displacement along the bases of homogeneous layers. 
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2. The degree of similarity between a two- dimensional elastic analysis and a two- dimensional 

scale-model experiment of the same physical situation. 

 

The physical situations investigated are simple idealized representations of the geologic 

conditions in sedimentary basins. However, investigation of these simple situations is a necessary 

first step toward an understanding of the more complex problems occurring in nature. 
 

Analytical study of structure 

 

Method 

 
In the analytical method employed in the tectonic structural study of the Pachmathi and 

distributions of vertical displacement are specified along the base of a homogeneous elastic layer. 

The method is similar to one used by Hafner (ͳͻͷͳ) to describe the response of a homogeneous 

elastic layer to applied stresses. The two methods give similar results when applied to the 

Mahadeva geologic situations such as folding of a layer. However, for certain structures, one 

method may be superior. 

 

 Block faulting of sedimentary layers above a rigid basement can be represented best by 

specifying displacements (Hunt and Fitchener, ʹͲͲͳ). In the Pachmarhi type of structure, 

adjacent blocks of basement rock are moved uniformly up or down with respect to each other. 

The overlying layer is undeformed by the movement in the region, where the two blocks 

meet.(McClay K.R.ͳͻͻͲ) The magnitude and, distribution of stress along the base 'of the layer 

cannot be determined in the zone of deformation. The best analytical representation can be made 

by using the only available information-the displacements. 

 

An analytical method based on displacements along the base of an elastic layer has an 

additional advantage. Displacement can be easily measured in scale-model experiments. 

Therefore a comparison between model experiments and elastic analyses is possible when 

displacements similar to those used in the experiments are specified in the elastic analyses. 
 

Derivation of analytical method 
 

 The analytical method is based on the theory of elasticity (Timoshenko and Goodier, ͳͻͷͳ; Love.ͳͻͶͶ ; Muskhelishvili,ͳͻͷ͵). Several assumptions made in this theory restrict its 

application to idealized representations of geologic structures. The displacements and strains must 

be small. The material undergoing deformation must be perfectly elastic (able to recover its initial 

form after removal of stresses), linearly elastic possessing a linear relationship between stress and 

strain), homogeneous (possessing the same specific properties through outs its volume), and 

isotropic possessing elastic properties which are the same in all directions). 

 

 Even' with these assumptions, application of the theory of elasticity to three-dimensional 

geologic problems remains difficult (Murdock, J.K.,ͳͻͻ). However, a simplification is possible 

within the framework of the theory. If the lower boundary of a layer undergoes (Murrell, S.A.F. ͳͻ) . Displacements in the ݔ − and ݕ − directions only, and these displacements are identical 

for all ݕݔ −cross sections along the ݖ −  from minus to plus infinity, then all xy-cross ݏ𝑖ݔܽ

sections are in the same condition (Figure 1). Therefore, a two-dimensional analysis of a single 

cross section will describe the stresses and displacements along the length of the ݖ −  With.ݏ𝑖ݔܽ

this procedure, two-dimensional situations similar to cross sections near the center of elongated 

geologic structures can be analyzed. 
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 The nomenclature used is as follows (notation is the same as that of Timoshenko and 

Goodier (ͳͻͷͳ) 

 𝜎௫,  𝜎௬, 𝜎௭  Normal components of stress parallel to the ݔ ݕ ,− − and ݖ − axis 

 𝜏௫௬   Shearing-stress component 

 𝜎ଵ, 𝜎ଶ, 𝜎ଷ  Maximum, intermediate, and minimum principal stresses 

,ݑ  ݔ Components of displacement in the                             ݒ − and ݕ −directions 

 𝜖௫ = 𝜕௨𝜕௫ , 𝜖௬ = 𝜕௩𝜕௬ Unit elongations in the ݔ −and ݕ −directions (strains) 

௫௬ߛ  = 𝜕௨𝜕௬ + 𝜕௩𝜕௫    Shearing strain 

 Modulus of rigidity              ܩ 

 Poisson's ratio              ݒ 

 Lame's constant              ߣ 

ଵܭ  = 𝜆+ଶீீ = ଶሺଵ−௩ሻଵ−ଶ௩   Constant used in this paper 

ଷܭ  = ͳ − ଵܭ = − ଵଵ−ଶ௩  Constant used in this paper 

 Density            ߩ 

 ݃               Gravitational acceleration 

 ∇ଶ= 𝜕మ𝜕௫మ + 𝜕మ𝜕௫మ    Laplacian operator 

ߙ  = ߨ݉ ⁄      ܮ      Coefficient 

 ௗ   Distortional strain-energy densityܧ 

 Thickness of the elastic layer   ܪ 

 Distance between points of zero vertical displacement   ܮ 

         Critical displacement the maximum amount of displacement withoutܤ 

                                     facture 

 𝜎   Normal stress across a potential fracture plane 

 𝜏   Shearing stress along a potential fracture plane 

 𝜏             Shear stress necessary to overcome the initial shear strength due cohesion 
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∅   Angle of internal friction          𝜃    

 

Angle between line of fracture and principal stress 
 

        The sign convention used for normal and shearing stresses is shown in Figure 1. Positive 

normal stresses are stensile and negative normal stresses are compressive. Positive shearing 

stresses have the directions shown in Figure 1; negative shearing stresses have directions opposite 

from those shown. The displacements ݑ and ݒ are positive if in the direction of increasing ݔ and ݕ, respectively. 

 

 The solution of any two-dimensional elastic problem must satisfy the following equations 

(Timoshenko and Goodier, 1951, p. 1 f - 27):  

 

For two-dimensional problems, displacements are identical for all ࢟࢞-cross sections along the ࢠ − 𝒂࢙࢞ from minus to plus infinity. Positive normal stresses are tensile; negative normal 

stresses are compressive. Positive shearing stresses have the directions shown; negative shearing 

stresses are opposite to those shown 

 

 
 

Figure 1. Co-ordinates and Stress Sign Convention for the Elastic Problems 

 
                                                                     𝜕𝜎ೣ𝜕௫ + 𝜕𝜏ೣ𝜕௫ = Ͳ,          (1) 

 𝜕𝜎𝜕௬ + 𝜕𝜏ೣ𝜕௫ = Ͳ,          (2) 

 ∇ଶሺ𝜎௫ + 𝜎௬ሻ = Ͳ,         (3) 
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(These equations and those which follow omit the terms pertaining to the weight of the 

layer. The effect of the weight of the layer is incorporated into the solutions in the next section of 

the text.) Equations (1) and (2) are the differential equations of equilibrium which insure a state 

of static equilibrium. Equation (3) is the compatibility equation (expressed in terms of stress) 

which insures a proper relationship between the three components of strain, so that two-

dimensional deformation can occur without discontinuities in displacement (Musk-helishvili, ͳͻͷ͵, p. 95-97). In addition to satisfying equations (1) through (3), the solution must satisfy 

specified stress and/or displacement boundary conditions. If the solution of the problem gives 

stresses and displacements which fulfill all these conditions, then it can be shown that the solution 

is unique (Timoshenko and Goodier, ͳͻͷͳ, p.  236; Muskhelishvili, 1953, p. 66-71). 

 

The stresses in equations (1) through (3) are related to the strains in the following manner: 
 𝜎௫ = ߣ ቀ𝜕௨𝜕௫ + 𝜕௩𝜕௫ቁ + ܩʹ 𝜕௨𝜕௫,                (4) 

 𝜎௬ = ߣ ቀ𝜕௨𝜕௫ + 𝜕௩𝜕௫ቁ + ܩʹ 𝜕௨𝜕௫,                            (5)     

 𝜏௫௬ = ܩ ቀ𝜕௨𝜕௫ + 𝜕௩𝜕௫ቁ,                             (6) 

 
Rewriting equations (1) through (3) in terms of strains gives: 

 ሺߣ + ሻܩ 𝜕𝜕௫ ቀ𝜕௨𝜕௫ + 𝜕௩𝜕௫ቁ + ሻݑଶሺ∇ܩ = Ͳ,                           (7) 

 ሺߣ + ሻܩ 𝜕𝜕௫ ቀ𝜕௨𝜕௫ + 𝜕௩𝜕௫ቁ + ሻݒଶሺ∇ܩ = Ͳ,               (8) 

 ∇ଶ [ʹሺߣ + ሻܩ ቀ𝜕௨𝜕௫ + 𝜕௩𝜕௫ቁ] = Ͳ.                (9) 

 

The displacements can be expressed as algebraic sums of partial derivatives of a scalar 

potential 𝜙ሺݔ, ,ݔሻand a vector potential l𝜓 ሺݕ ,ሻݕ  in the following way (Phillips, ͳͻ͵͵, p. 186): 

ݑ  =  𝜕ϕ𝜕௫ + 𝜕ψ𝜕௫,                (10) 

ݒ  = 𝜕ϕ𝜕௫ − 𝜕ψ𝜕௫.                            (11) 

 

Substituting derivatives of equations (10) and (11) into equations (7) and (8) gives the 

equations of equilibrium in terms of the two potentials: 

 ሺߣ + ሻܩʹ 𝜕𝜕௫ ሺ∇ଶ𝜙ሻ + ܩ 𝜕𝜕௫ ሺ∇ଶ𝜓ሻ = Ͳ,             (12) 

 

 ሺߣ + ሻܩʹ 𝜕𝜕௬ ሺ∇ଶ𝜙ሻ + ܩ 𝜕𝜕௬ ሺ∇ଶ𝜓ሻ = Ͳ,                         (13) 

 

Differentiating equation (12) with respect to ݔ and equation (13) with respect to ݕ and 

adding the two equations gives: 
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∇ଶሺ∇ଶ𝜙ሻ = Ͳ.                (14) 
 

Similarly, differentiating equation (12) with respect to ݕ and equation (13) with respect to ݔ and 

subtracting one equation from the other gives: 
 ∇ଶሺ∇ଶ𝜓ሻ = Ͳ.                (15) 
 

Equations (14) and (15) require that 𝜙 and 𝜓 be either harmonic ሺ∇ଶ𝜙 = Ͳሻ or biharmonic 

functions ሺ∇ସ𝜙 = Ͳሻ.Substitution of partial derivatives of equations (10) and (11) into the 

equations for 𝜎௫ and 𝜎௬ (equations 4 and 5) and summing the results gives: 

 𝜎௫ + 𝜎௬ = ʹሺߣ +  ሻ∇ଶ𝜙.              (16)ܩ

 

The sum of 𝜎௫ and 𝜎௬ is zero when 𝜙 is a harmonic function. This condition cannot be satisfied 

by deformed layers (for example, at a free surface where 𝜎௬ = Ͳ everywhere and 𝜎௫ has finite 

values). Therefore must be a biharmonic function. 

 

The solutions for 𝜙 and 𝜓 must satisfy the biharmonic differential equations and pre-

scribed boundary conditions. Of interest here is the deformation of an elastic layer of thickness ܪ 

which has the following stresses and displacements specified on its boundaries: 

 

At ݕ = Ͳ, 𝜎௬ = Ͳ, and 𝜏௫௬ = Ͳ  (ݎ݁ݖ ݏ݁ݏݏ݁ݎݐݏ); 

 

At ݕ = ,ܪ ݒ = ܤ− cos ݑ and ,ݔߙ = 𝑃ܤ sin  ,ݔߙ
 

     Ͳ ≤ 𝑃 < ͳ. 
 

The lower surface of the layer undergoes vertical and horizontal displacements 

proportional to the cos and sin ݔߙ ,ݔߙ  respectively. Assume that the vertical and horizontal 

displacements within the layer are also proportional to .the cos andsin ݔߙ  Equations (10) and.ݔߙ

(11), which expresses displacements in terms of the potential functions, indicates that the above 

distribution of displacements may be possible with potential functions of the form: 
                                                                  𝜙 = cos ݔߙ  ሻ,                            (17)ݕሺܨ

 𝜓 = sin ݔߙ ݂ሺݕሻ,               (18) 

 

At this point, there is no guarantee that equations (17) and (18) will lead to a solution of 

the problem. Equations (17) and (18) are the correct expressions for the potential functions only if 

the stresses and displacements derived from them satisfy equations (1) through (3) and the 

prescribed boundary conditions. 

 

 𝑭ሺ࢟ሻ and ࢌሺ࢟ሻ can be determined by substituting equations (17) and (18) into equations 

(14) and (15) and solving the resulting fourth-order differential equations. This leads to general 

expressions for 𝜙 and 𝜓. 

 

 𝜙 = ݏܿ ݔߙ ଵ݁𝛼௬ܣ] + 𝛼௬݁ݕଶܣ + ଷ݁−𝛼௬ܣ +  𝛼௬],         (19)−݁ݕସܣ

 𝜓 = 𝑖݊ݏ ݔߙ ହ݁𝛼௬ܣ] + 𝛼௬݁ݕܣ + ݁−𝛼௬ܣ +  𝛼௬],                                                  (20)−݁ݕܣ
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Where ܣଵ through ଼ܣ are arbitrary constants.  

Equations (19) and (20) contain eight arbitrary constants, whereas only four boundary 

conditions are specified in the problem. Four extra-arbitrary constants appear in the equations for 

the potential functions as a result of (1) expressing the displacements as partial derivatives of 

potential functions (equations 10 and 11), and (2) differentiating the equations of equilibrium to 

obtain the two biharmonic equations. Some of the constants in the general expressions for 𝜙 and 𝜓 are related. Substituting equations (19) and (20) into equations (12) and (13) gives: 

ܣ  = ቀ𝜆+ଶீீ ቁ ܣଶ = ଶሺଵ−௩ሻଵ−ଶ௩ ଶܣ  =  ଵ,             (21)ܣଵܭ

଼ܣ  = ቀ𝜆+ଶீீ ቁ ܣସ = − ଶሺଵ−௩ሻଵ−ଶ௩ ସܣ =  ସ,             (22)ܣଵܭ−

 

These relationships eliminate two of the extra constants. 

 

The remaining two extra constants were eliminated by trial and error until equations for 

and were found which satisfied the four boundary conditions and the equations of equilibrium and 

compatibility. The equations for ф and 𝜓 satisfying the requirements for a solution of stress and 

strain in the elastic layer are: 

 𝜙 = ݏܿ ଵሺ݁𝛼௬ܣ]ݔߙ + ݁−𝛼௬ሻ + 𝛼௬݁ݕଶܣ +  𝛼௬],                       (23)−݁ݕସܣ

 𝜓 = 𝑖݊ݏ ߙ ହሺ݁𝛼௬ܣ]ݔ + ݁−𝛼௬ሻ + 𝛼௬݁ݕଶܣଵܭ +  𝛼௬],          (24)−݁ݕସܣଵܭ

 

The constants in the above equations are equal to: 

ଵܣ  = Ͳ, 
ଶܣ  = 𝛼మே = 𝛼ே ଷ[ሺͳܭ} − 𝑃ሻ݁𝛼ு − ሺͳ − 𝑃ሻሺͳ + [ሻ݁−𝛼ுܪߙʹ − ʹሺܭଵ − 𝑃ሻ݁−𝛼ு},       (25) 

ସܣ  = 𝛼రே = 𝛼ே ଷ[ሺͳܭ} + 𝑃ሻ݁−𝛼ு − ሺͳ − 𝑃ሻሺʹܪߙ − ͳሻ݁𝛼ு] − ʹሺܭଵ + 𝑃ሻ݁𝛼ு},        (26) 

ହܣ  = ఱே = − యே [ሺܭଵ + ଷሻሺ݁𝛼ுܭ𝑃ܪߙ + ݁−𝛼ுሻ + ሺ𝑃 − ଷሻሺ݁𝛼ுܭܪߙ − ݁−𝛼ுሻ],        (27) 

 

where 

 ܰ = ߙ ଵܰ = ʹଷሺܭ]ߙ − ݁ଶ𝛼ு − ݁−ଶ𝛼ுሻ − ʹଷሺܭଵܭ + ݁ଶ𝛼ு + ݁−ଶ𝛼ுሻ + Ͷߙଶܪଶܭଷଶ + Ͷܭଵ],       (28) 

 

and 

ଷܭ  = ሺͳ − ଵሻܭ = − ଵଵ−ଶ௩.              (29) 

 

The general equations for ݒ, ,ݑ 𝜎௬, 𝜎௫ and 𝝉࢟࢞  are 

ݒ  =  c୭ୱ 𝛼௫ேభ ଷܭݕߙଶ݁𝛼௬ሺܥ] + ͳሻܥସ݁−𝛼௬ሺܭݕߙଷ − ͳሻ − ହሺ݁𝛼௬ܥ + ݁−𝛼௬ሻ],                                 (30) 

ݑ  =  ୱi୬ 𝛼௫ேభ ଷܭݕߙଶ݁𝛼௬ሺܥ−] + ଵሻܭ − ଷܭݕߙସ݁−𝛼௬ሺܥ − ଵሻܭ + ହሺ݁𝛼௬ܥ + ݁−𝛼௬ሻ],                       (31) 
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 𝜎௬ = ଶீ𝛼 c୭ୱ 𝛼௫ேభ 𝛼௬݁ݕߙଷܭଶܥ] − 𝛼௬−݁ݕߙଷܭସܥ − ହሺ݁𝛼௬ܥ − ݁−𝛼௬ሻ],        (32) 

 𝜎௫ = −𝜎௬ + ଶீ𝛼 c୭ୱ 𝛼௫ேభ ଶ݁𝛼௬ܥଷሺܭʹ−] −  ସ݁−𝛼௬ሻ],           (33)ܥ

  𝜏௫௬ = ଶீ𝛼 ୱi୬ 𝛼௫ேభ ହሺ݁𝛼௬ܥ] + ݁−𝛼௬ሻ − ݕߙଷ݁𝛼௬ሺܭଶܥ + ͳሻ + ݕߙଷ݁−𝛼௬ሺܭହܥ − ͳሻ],                     (34) 

 

 Also of interest in elastic analysis are the equations for the principal stresses. The 

principal stresses at a point within a stressed layer are the stress values normal to three per-

pendicular planes across which the shearing stresses vanish. In a two-dimensional analysis, the 

intermediate principal stress ሺ𝜎ଶሻ parallels the ݖ −axis. The equations for the principal stresses in  

terms of 𝜎௫, 𝜎௬, and 𝜏௫௬ are: 

 𝜎ଵ = 𝝈࢞+𝝈࢟ + √ቀ𝝈࢞+𝝈࢟ ቁ + 𝝉࢟࢞ ,              (35) 

 𝜎ଷ = 𝝈࢞+𝝈࢟ − √ቀ𝝈࢞−𝝈࢟ ቁ + 𝝉࢟࢞ ,              (36) 

 

 The response of an elastic layer to general distributions of displacement along its lower 

boundary can be determined by superposing equations of the type which have been shown herein 

(Timoshenko and Goodier, 1951, Kennedy, B. Stix Vallance, J.W. Lavallee, V and Longpre, 

M.A. 2004). Combination of equations is accomplished by means of a Fourier series, which can 

be used to approximate a variety of geologically reasonable displacements at the base of a 

sedimentary layer. 

 
Superposition can also be used to incorporate into the equations an initial state of stress 

due to the weight of the layer. In this work, a state of hydrostatic stress: 

 𝜎௫ = ,ݕ݃ߩ− 𝜎௬ = ,ݕ݃ߩ− and 𝜏௫௬ = Ͳ, 

 

Which satisfies the equilibrium and compatibility requirements, has been superposed with 

stresses arising from the deformation of the layer. This superposition of equations gives the 

correct stress values for layers which are assumed to be in hydrostatic equilibrium prior to 

deformation Faller, A.M. and Soper, N.J., 1979) 

 

Application of analytical method to examples 
 

 The internal stress distribution of a deformed elastic layer can be portrayed by a set of 

orthogonal curves called stress trajectories. These stress trajectories are tangent to the directions 

of the principal stresses at all points within the layer. The equation for the direction of one of the 

principal stresses ሺ𝜎ଵ ݎ 𝜎ଶሻ in the two-dimensional case is: 

  tan ߚʹ = ଶ𝜏ೣ𝜎ೣ−𝜎,                (37) 

 

where 𝜷 is the angle between the positive ࢞-axis and the principal stress measured in the direction 

of the positive ࢟ −axis. In the numerical examples discussed in following sections, a graphical 
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construction of the stress trajectories was made on the basis of ߚ values computed for a 

grid of points within the layer. 
 

The only factors which influence the orientations of the stress trajectories are the shape of 

the layer (ratio of H  to L )  and Poisson's ratio. Rigidity (G), maximum applied vertical dis-

placement ( B ) ,  and hydrostatic stress cancel out of equation (37). The shape of the layer (ܪ ⁄ܮ )  

and Poisson's ratio appear in the stress equations through the constants ܭଵ, ,ଷܭ ,ଶܥ  .ହܥ ସ andܥ

 

 The distribution of displacement in a deformed layer can be portrayed by a field of 

displacement vectors. The orientation and length of each vector indicate the direction and 

magnitude of the net displacement at the point from which the vector originates. (Vendeville, 

B,ͳͻͻͳ) 

 

The only factors which influence the orientations and relative magnitudes of the displace-

ment vectors are the shape of the layer and Poisson's ratio. Rigidity (G) does not appear in the 

displacement equations. The shape of the layer (H / L )  and Poisson's ratio enter into the 

displacement expressions through ܭଵ, ,ଷܭ ,ଶܥ  .ହܥ  ସ andܥ

 

 Stress distributions and displacement fields of different examples can be compared if 

each numerical example sustains an amount of applied displacement which is just necessary to 

initiate fracture at some point within the layer. In the numerical examples which follow, dis-

placements necessary to initiate fracture were computed on the basis of a special case of the Mohr 

fracture criterion.  

 

The equation for this fracture criterion is: 

 𝜏 = 𝜏 − 𝜎 tan 𝜙,              (38) 

 
where 𝜏 and 𝜎 are the shearing and normal stresses across a potential fracture plane, 𝜏 is the 

shear stress necessary to overcome the initial shear strength due to cohesion, and 𝜙 is the angle of 

internal friction. The shear strength is dependent on the type of stress (tensile or compressive) and 

the amount of confining (hydrostatic) stress. The criterion is diagrammed in Figure 2. 

 

 This special form of the Mohr criterion was selected because it satisfactorily describes 

the shear strength of many sedimentary rocks under the confining pressures encountered at depth 

in sedimentary basins (ͳͲͲͲ − ʹͲͲͲ ݇݃/ܿ݉ଶ) (Jaeger, ͳͻͷ, p.82). For zero or low confining 

pressures, the criterion may not explain tensile fracture of rock subjected to tensile stress. 

Inasmuch as present experimental data are inadequate for establishing a fracture criterion for 

rocks under tension, the assumption was made that the Mohr criterion does describe fracture 

under tensile stresses.(Barriere ,M.ͳͻ). 

 

Critical displacements in the numerical examples were determined as follows: 

 

1. Principal stresses were found for a grid of points by substituting computed values of 𝜎௫, 𝜎௬ and 𝜏௫௬ into equations (35) and (36). However, in computing these stresses, B 

(which appears in the equations for 𝜎௫ , 𝜎௬ and𝜏௫௬) was not given a value. By carefully 

examining these computed principal stresses, all but a few points in the layer could be 

eliminated as probable points of fracture. 

2. A displacement (B) necessary to initiate fracture at each of the probable points of  

      fracture was found by substituting the values of the principal stresses (expressed as                 
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       fractions of B  plus a hydrostatic stress term) into a rearranged form of equation (38): 

  

 |𝜎భ−𝜎యଶ | = 𝜏 cos 𝜙 − ቀ𝜎భ+𝜎మଶ ቁ sin 𝜙,            (39) 

 

and solving for B. 

 

3. The point giving the smallest value of ܤ was selected as the point of fracture, and the 

computed ܤ was taken as the critical displacementܤ.  

 

 
 

Figure 2. Diagram of the Mohr Fracture Criterion 

 

The Mohr criterion explains satisfactorily the shear strength of brittle materials which are 

generally elastic up to the point of fracture. However, some materials, after an initial period of 

elastic deformation, yield by plastic flow rather than by fracture. In the elastic region of the 

deformation, the analysis of stress and displacement is the same regardless of the type of failure 

which occurs. The initiation of plastic flow, however, 𝜏 and 𝜎 are the shearing and normal 

stresses across a potential fracture plane, 𝜏 is the shear strength due to cohesion, 𝜙 is the angle 

of internal friction, and 𝜽 is the angle between the stress trajectory and the line of fracture is 

probably controlled by a different condition than fracture in brittle substances(Langston 

,C.A.,ͳͻͳ). Flow is believed to occur when the strain energy of distortion per unit volume 

reaches a value characteristic of the material (Jaeger, ͳͻͷ, P.93). The formula for this criterion 

in the two-dimensional plane strain case is (Timoshenko and Goodier, 1951, p. 149): 

ௗܧ  = ଵଵଶீ {[𝜎௫ − 𝜎௬]ଶ + [𝜎௬ − 𝜎௫)ݒ + 𝜎௬)]ଶ + 𝜎௫)ݒ] + 𝜎௬) − 𝜎௫]ଶ + 𝜏௫௬మ},        (40) 
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This criterion, credited to R. von Mises, differs from the Mohr criterion in that initiation of plastic 

flow is independent of confining stress and occurs regardless of whether the stresses are tensile or 

compressive. 
 

In the numerical examples, values of distortional strain energy density were calculated using the 

values of stress dictated by the Mohr fracture criterion. The values obtained in this manner are not 

related to any characteristic values for rock materials. However, the distributions of distortional 

strain energy density do show the regions susceptible to flow in materials which favor this mode 

of failure (Marti, J. Ablay, G.J.,Redshaw, L.T. and Sparks ,R.S.J. ૢૢ). 
 

 
 

Figure 3. Classification of Numerical Examples Applied vertical displacement in Category I is sinusoidal; 

applied vertical displacement in Category II is an approximate step. 

 

Numerical examples 

 

Introduction –  

 

Table 1 summarizes the numerical calculations. The examples are categorized according to the 

nature of the displacement specified along the lower boundary of the elastic layer (Figure 3).In 

Category I, the lower boundary of an elastic layer undergoes sinusoidal   vertical   displacement   

and   no horizontal displacement. Equations (25) through (34) (with 𝑃 = Ͳ) were used for the 

numerical examples in the first category. In Category II, the lower boundary of an elastic layer 

undergoes an approximate step in vertical displacement and no horizontal displacement. Eight 

solutions of the type given by equations (25) through (34) (with 𝑃 = Ͳ) were superposed by 

means of a Fourier series to obtain the numerical example in this category. In Category III, the 

lower boundary of an elastic layer undergoes sinusoidal vertical and horizontal (ͻͲ° out of phase 

with the vertical) displacements. Equations for the numerical example in this category 

are given in a later section. 
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The boundary conditions at the upper surface of the elastic layer are 𝜎௬ = Ͳ and  𝜏௫௬ =Ͳ. These conditions specify a free upper surface which corresponds to the surface of the earth 

(Allen, C.R., Amannd, P.St.Richter, C.F. and Nordquist, J.M.ͳͻͷ). In Categories I and II, the 

boundary conditions on the lower surface are (1) no horizontal displacement and (2) a specified 

distribution of vertical displacement. The latter conditions approximate the situation along the 

lower 𝜏 and 𝜎 are the shearing and normal stresses across a potential fracture plane, 𝜏 is the 

shear strength due to cohesion, 𝜙 is the angle of internal friction, and 𝜃 is the angle between the 

stress trajectory and the line of fracture. Surface of an elastic sedimentary layer which is 

deformed by vertical movement of rigid bedrock beneath it. The contact between rigid bedrock 

and elastic sedimentary rock is "welded" so that horizontal movement along the contact is 

prevented. 

 

Average values of the properties of sedimentary rocks are used in each example. The 

density, ʹ.ͷ ݃݉ݏ/ܿ݉͵, and Poisson's ratio, 0.25, are based on the values listed in Birch et 

al.(ͳͻͶʹ, P.8-37, 76). The rigidity value Adopted, ʹ.Ͳ × ͳͲଵଵ݀ݏ݁݊ݕ/ܿ݉ଶ, is Gutenberg's 

estimate of rigidity for Tertiary sandstone at a pith of ʹ ݇݉ (Gutenberg, ͳͻͷͳ, p. 367). The angle 

of internal friction, ͵ͷ°, is based on experimental evidence cited by Hubbert (1951). The cohesive 

strength, ʹͷͲ ݇݃/ܿ݉ଶ, was calculated from crushing-strength data on sedimentary rocks (Birch 

et al.,ͳͻͶʹ, P.116; Marin, ͳͻͷʹ, P. 381; Mills et al.,ͳͻͷͷ, P. 310) and the adopted angle of 

internal friction of ͵ͷ°. 
 

Results of the numerical calculations are diagrammed in Figures 4-6 and 10. These 

figures are drawn for a short portion of a layer between the limits ݔ = Ͳ and ݔ =  ,However. ܮ 

the symmetry of the problem permits visualization of results for longer layers if the drawings are 

rotated ͳͺͲ° about vertical axes in the plane of the figure. 

 

 The displacements shown in these figures are only those resulting from the application of 

vertical displacements on the lower boundary of the layer. The stress values, on the other hand, 

include the initial hydrostatic stresses as well as the stresses arising from the deformation of the 

layer.(Couples, G.D., Lewis, H., Olden, P., Workman G.H. and Higgs, G. ʹͲͲ) 

 

Category i examples - Displacement fields for Category I examples are shown in Figures 4  A  

and 5 A. Theoretically, two factors influence the relative magnitudes and orientations of the 

displacement vectors in these figures the dimensions of the layer and Poisson's ratio. Figure 7 

shows the relative changes in the maximum displacements at the boundaries with changes in 

these factors. The shape of the layer has a strong influence on the displacement field, whereas 

Poisson's ratio has little effect. 

 

The stress distributions for Category.1, examples are shown in Figures 4 B and 5 B. The 

orientations of the stress trajectories in these figures are determined by the shape" of the layer 

(H/L) and Poisson's ratio. Comparison of Figures 45 and 55 shows the influence of shape on the 

direction of the stress trajectories. Stress distributions calculated for two other examples (layer 

dimensions same as Figure 45) with Poisson's ratios of Ͳ.ͳ and Ͳ.͵͵͵ were nearly identical in 

appearance. Between these two values, orientation of stress trajectories is nearly independent of 

variations in Poisson's ratio.Of interest in the stress diagrams (Figs. 4B and 5B) is the area of 

horizontal tensile stress centered over the crest of the deformed layer and extending to a depth of 

approximately ͳ ݇𝑖݈ݎ݁ݐ݁݉. Inasmuch as rocks are very weak Funder "tensile stress, point ܨ on 

Figures 4 B and 5 B, where the tensile stresses are greatest, is the point of initial fracture. For 

brittle rock, the type of fracture under the stress conditions at ܨ is a vertical crack (Jaeger, ͳͻͷ, 
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p. 74). The maximum applied displacement or critical displacement before fracture occurs at ܨ in 

Figures 45 and 55 is ͺ.ʹ and Ͷ.ͷ ݉ respectively.  

 

Two regions are equally susceptible to yielding by plastic flow according to the 

distortional strain-energy density distributions in Figures 4C and 5C. One region is centered over 

the crest of the deformed layer, the other is centered in the trough of the deformed layer (Couples 

G.D. and Lewis, ͳͻͻͻ). The high distortional strain-energy at the crest of the fold reaches a 

maximum value at the point of fracture determined by the Mohr criterion. Fracture does not occur 

in the other region of high distortional strain-energy, inasmuch as the compressive stresses in this 

region are insufficient to initiate fracture according to the Mohr criterion. 

 
Category ii example –  

 

Figure 6 A shows the displacement field for the Category II example. The influence of 

layer shape on the maximum displacements at the boundaries is given in Figure 8. Figure 6 B 

shows the stress distribution for the Category II example. Two features are notable. First, most of 

the vertical stress along the bottom of the layer is concentrated toward of the adjoining uplifted 

and down dropped blocks. Second, the stresses in the central regions of the uplifted and down 

dropped blocks are nearly zero if initial hydrostatic stresses are disregarded. Both these features 

indicate that deformation of the layer is restricted to the region where the two blocks meet. In 

addition, the lack of stress in the central regions of the layer indicates that a uniform displacement 

superposed on any of the examples will not change the stress distribution. Therefore the results 

shown in Figures 4 B, 5 B and 6 B are also solutions for examples in which all vertical 

displacements applied along the lower boundary are in one direction.(Murdock, J.N.ͳͻͻ, 

McClay, K.R. ͳͻͻͲ, Barriere , m.1977) 

 

The same applied displacement will cause fracture at ܨଶ ሺݔ = Ͳ.ͷ͵ܮ, ݕ =  ଵ if the fracture properties ሺ𝜏ܽ݊݀ 𝜙ሻ of the layer are changed. Figure 9 shows the conditionsܨ ሻ as well asܪ

under which fracture will occur simultaneously at ܨଵ and ܨଶ .The stresses at ܨଶ are compressive 

in both the ݔ − and ݕ −directions. The type of failure for brittle rock under these stress conditions 

is a shear fracture (Yin, H. and Groshong, R.H. Jr, ʹͲͲ)  

 

Two separate regions of high distortional strain-energy density occur along the upper 

boundary of the layer (Figure 6 C). The maximum value in each of these regions is equal to the 

maximum values found in the Category I examples. The highest distortional strain-energy 

concentration occurs at the bottom of the layer directly above the point at which the rate of 

change of applied displacement is greatest. 

 

In Figure 65, a region of nearly horizontal tensile stress lies just to the left of ݔ = ܮ ʹ⁄ ݕ, = Ͳ and extends to a maximum depth of ͳ ݇𝑖݈ݎ݁ݐ݁݉. The point of initial fracture ሺܨଵሻ is at = Ͳ.͵ͷL , ݕ = Ͳ, where these tensile stresses are greatest. The type of fracture under the stress 

conditions at ܨଵ is a vertical tensile crack. The amount of applied vertical displacement required 

to initiate fracture at ܨଵ is ͵. ݉. 

 

Scope of numerical examples in categories i  and ii -  Theoretically, two factors influence the 

orientations of the displacement vectors and the stress trajectories the dimensions of the layer and 

Poisson's ratio. The calculations which have been described indicate that layer shape has a strong 

influence on these orientations, whereas Poisson's ratio has little effect. As a result, the numerical 

solutions given here are applicable to any homogeneous elastic layer providing (1) its shape is the 

same as the shape of the layer in the example, and (2) an appropriate scaling factor is used to 
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determine the magnitudes of stress in the stress diagram. The scaling factor is based on the 

rigidity of the layer and the maximum applied displacement. The maximum applied displacement 

must be less than the amount of displacement necessary to initiate fracture. 

 
 

Elastic properties of the layer do not have to be known for a comparison of elastic 

analyses and scale-model experiments (Sharp,I .R. Gawthorpe, R.L. Underhill, J.R.ʹͲͲͲ ).  
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Displacements and fractures (see "Prediction of fractures"), the only items easily 

observed in model experiments, are independent of the' elastic constants in the elastic analyses. 

 

Therefore, geometrical similarity of layer shapes is the only requirement for a 

comparison between a two-dimensional elastic analysis and a two-dimensional scale model. 

 

 

 

 

Figure 4. Example la Diagrams: A-Displacement Field; B-Stress Distribution; C-Distortional Strain-Energy 

Density In example la, the lower boundary of an elastic layer ͷ ݇𝑖݈ݎ݁ݐ݁݉ thick and ʹͷ ݇𝑖݈ݎ݁ݐ݁݉ long 

undergoes half a wave length of sinusoidal vertical displacement. 

 

Category iii example - A "welded" contact, which is specified along the lower boundary in 

Categories I and II examples, is one extreme of many possible contact conditions. The opposite 

extreme is a "frictionless" contact. The frictionless lower-boundary case was analytically 

investigated to determine the effect of contact conditions on deformation resulting from a 

sinusoidal distribution of vertical displacement 

 

A frictionless condition at the lower boundary means that the shearing stress is zero along 

that boundary. The magnitude of applied horizontal displacement which gives zero shearing 

stress along the lower boundary is difficult to compute. The easiest approach is to specify stresses 

on the lower boundary as Hafner (ͳͻͷͳ) did in his work. 
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The solution of problems in which all boundary conditions are expressed in terms of stress 

reduces to the solution of a single biharmonic equation which will lead to stresses satisfying 

equilibrium (equations 1 and 2), compatibility (equation 3), and the prescribed boundary 

conditions. Of interest here is the deformation of an elastic layer of thickness ܪ under the 

following boundary conditions: 
 

 

 

 
 

Figure 5.  Example Ib Diagrams: A -Displacement Field; B - Stress Distribution; C - Distortional Strain-

Energy Density. In example Ib, the lower boundary of an elastic layer   thick and . ૠ  long 

undergoes half a wave length of sinusoidal vertical displacement. 
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ݕ ݐܣ  = Ͳ, 𝜎௬ = Ͳ, 𝜏௫௬ = Ͳ (stresses zero); ݕ ݐܣ = ,ܪ 𝜎௬ = ܣ− sin ݔߙ , 𝜏௫௬ = Ͳ. 
 

The biharmonic equation and the boundary conditions are satisfied by: 

 𝜙=sin ଵܦ]ݔߙ cos ℎݕߙ + ଶܦ sin ℎݕߙ + ݕଷܦ cos ℎݕߙ ݕସܦ+ sin ℎ(41)         ,[ݕߙ 

 

The constants in equation (41) are equal to: 

ଵܦ  = Ͳ, 

ଶܦ  = − య𝛼 = ర𝑘భ𝛼 = ర𝛼 [ୱi୬ ℎ𝛼ு+𝛼ு c୭ୱ ℎ𝛼ு𝛼ு ୱi୬ ℎ𝛼ு ],            (42) 

ଷܦ  = ସ݇ଵܦ− = ସܦ− [ୱi୬ ℎ𝛼ு+𝛼ு c୭ୱ ℎ𝛼ு𝛼ு ୱi୬ ℎ𝛼ு ],            (43) 

ସܦ  = 𝛼𝑘మ = 𝛼[ሺ𝛼ு+𝑘భሻ ୱi୬ 𝛼ு−𝑘భ𝛼ு c୭ୱ 𝛼ு],            (44) 

 

The general equations for 𝜎௬, 𝜎௫, 𝜏௫௬, ,ݒ and ݑ a r e :  

 𝜎௬ = −  𝑠𝑖 𝛼௫𝑘మ . [ሺݕߙ + ݇ଵሻ 𝑖݊ݏ ℎݕߙ − ଵ݇ݕߙ ݏܿ ℎݕߙ],         ( 45) 

 𝜎௫ =  𝑠𝑖 𝛼௫𝑘మ . [ሺݕߙ − ݇ଵሻ 𝑖݊ݏ ℎݕߙ + ሺʹ − ଵሻ݇ݕߙ ݏܿ ℎݕߙ] ,           (46) 

 𝜏௫௬ = −  𝑠 𝛼௫𝑘మ . [ሺͳ − ଵሻ݇ݕߙ 𝑖݊ݏ ℎݕߙ + ݕߙ ݏܿ ℎݕߙ],          (47) 

ݒ  =  𝑠𝑖 𝛼௫ଶ𝛼ீ𝑘మ [ሺͳ − ሻݒʹ 𝑖݊ݏ ℎݕߙ + ଵ݇ݕߙ 𝑖݊ݏ ݕߙ − ʹ݇ଵሺͳ − ሻݒ ݏܿ ℎݕߙ − ଵ݇ݕߙ ݏܿ ߙ [ݕ + ,ݐ݊ܽݐݏ݊ܿ  ( 4 8 )  

ݑ  =−  𝑠 𝛼௫ଶ𝛼ீ𝑘మ [−݇ଵሺͳ − ሻݒʹ 𝑖݊ݏ ℎݕߙ + ݕߙ 𝑖݊ݏ ℎݕߙ + ʹሺͳ − ሻݒ ݏܿ ℎݕߙ − ଵ݇ݕߙ ݏܿ ݕߙ − ଵ݇ݕߙ ݏܿ ℎݕߙ] ,ݐ݊ܽݐݏ݊ܿ+             ( 4 9 )  

 

The elastic constants appear in the displacement equations, but not in the stress equations. 

  

Table 1 summarizes the results obtained from numerical example Ilia. In example Ilia, a 

sinusoidal vertical stress is applied to the lower boundary of an elastic layer. The elastic constants 

and fracture properties for the layer are the same as in the previous examples. The results of the 

calculations are diagrammed in ^Figure 10. In addition, calculations were made to determine the 

influence of layer shape on the relative magnitudes of maximum displacement at the boundaries 

(Figure 11). Fracture point and critical displacement were determined by the Mohr fracture 

criterion (equations 38 and 39). 

 

 A comparison of examples III a and l b shows the maximum influence of the conditions 

at the flower boundary on the deformation resulting from a sinusoidal distribution of applied 

vertical displacement. The layers in these examples have identical dimensions, elastic constants, 

and fracture characteristics. Both undergo the same distributions of vertical displacement along 
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the lower boundary. The only difference is the contact between the layer and underlying material. 

Example III a has a frictionless contact, and example lb has a welded contact. 

The following are not greatly affected by the nature of the contact: 

1. The point of initial fracture as determined by the Mohr criterion (compare position of ܨ on 

Figure 5 B and 10 B). 

2. The distribution of vertical and horizontal displacements at the upper boundary as a function 

of the dimensions of the layer (compare Figure 7 A and 11). 

 

The features which change when the lower boundary is frictionless are: 

1. The amount of applied vertical displacement before fracture is slightly greater. 

2. Two additional areas are susceptible to yielding by plastic flow (compare Figure 5 C and 10 

C). 

3. Horizontal displacements nearly equal to those on the upper boundary occur along the lower 

boundary (compare Figure 5 A and 10 A). 

 If displacement does occur along the lower contact of a layer, it will always be less than 

the amount found in example III a. An absolutely frictionless contact between rock layers is not a 

reasonable boundary condition in geologic problems. For this reason, most features of the 

deformation in a homogeneous layer will tend to be closer to those occurring in the "welded" 

contact case. 

 

Prediction of fractures 

 

 According to the Mohr criterion, fracture occurs along lines which intersect the principal 

stresses at constant angles. The angle between the line of fracture and the stress trajectories is 

equal to (Figure 2) 

 𝜃 = Ͷͷ° ± 𝜙ଶ ,                (50) 

 

The extent to which the stress distributions in the analytical work can be used in 

predicting fractures with the Mohr criterion is difficult to determine. Any fracturing within the 

layer changes the stress distribution determined in the elastic analysis. If this change is confined 

to regions near the fracture, then formation and propagation of fractures are controlled by the 

original stress distribution. On the other hand, if the change extends a large distance from the 

fractures, formation and propagation of fractures are controlled by a stress distribution which 

changes continuously as the fractures are formed. One method of determining whether or not 

stress distributions from an elastic analysis can be used to predict fractures is to perform 

experiments. 

 

Experimental Study 

 

Problems investigated 

 

Two problems similar to the analytical examples were investigated in the scale-model 

experiments. The first dealt with the deformation of a homogeneous layer resulting from the 

application of a broad curve in vertical displacement along its lower boundary. The second 

problem dealt with the deformation of a homogeneous layer resulting from the application of a 

step in vertical displacement along its lower boundary. 
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Figure 6. Example IIa Diagrams: A-Displacement Field; B-Stress Distribution; C-Distortional Strain- 

Energy Density 

 

Theory 
 

Only the scale-model theory needed for this discussion is summarized here. A more 

detailed account of scale-model theory and its application to geologic problems is given by 

Hubbert (1937).A geologic structure and a scale-model representation of the same structure must 

have certain similarities. The model must be similar in shape to the geologic structure; that is, 

lengths, areas, and volumes must be proportional. 

ܮ  =  ,ܮߣ

ܣ  =  ଶ,          (51)ܮଶߣ
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𝑉 =  ,ଷܮଷߣ

 

,݁ݎݑݐܽ݊ ݀݊ܽ ݈݁݀݉ ݁ݐ𝑖݊݀𝑖ܿܽ  ݀݊ܽ  ݏݐ𝑖ݎܿݏܾݑܵ)  The mass distributions (.ݕ݈݁ݒ𝑖ݐܿ݁ݏ݁ݎ

must be similar; that is, the mass for any element of volume in the model must be 

proportional to the mass of the corresponding element in the geologic structure: ݀ܯ =  ,              (52)ܯ݀ߤ

The time required for any given change of shape or position in the model must be 

proportional to the time required in the geologic structure: 

ܶ = 𝜏 ܶ,               (53) 

The constants of proportionality in these equations,  , ߤ and 𝜏 are the model ratios of 

length, mass, and time, respectively. From these model ratios, it can be seen that 

dynamic similarity between the model and the original exists if the ratio of each 

force acting on an element of mass in the model is proportional to the same force 

acting on the corresponding element of mass in the geologic structure: 

 ௗெ𝑇−మௗெ𝑇−మ = 𝜏−ଶߣߤ = 𝜙,             (54) 

 

In the formation of geologic structures and also in the modeling of these structures, accelerations 

are generally so small that forces due to inertia are negligible. If inertia forces are negligible, 

dynamic similarity is completely satisfied (for independent values of the model ratios  , ߤ and 𝜏) 

as long as all forces conform to the model ratio of the gravity forces (Hubbert, ͳͻ͵, p. ͳͶͺͻ). 

The geologic structure and the model are subjected to the same gravitational field, therefore, the 

model ratio of gravity force is: 
 ிி = ௗெ𝑔ௗெ𝑔 =  (55)               ,ߤ

 

From equation (55) the ratio of strength between the model and the original 

structure is derived: 
 𝜎 =  ଶ,                (56)−ߣߤ

 

The model ratio of mass can be expressed as: 

ߤ  =  ଷ,             (57)ߣߜ

 
where ߜ equals model ratio of density. Substituting equation (57) into equation (56) gives for the 

model ratio of strength: 

 𝜎 =  (58)               ,ߣߜ

Replacing X with the ratio of lengths gives: 

ܮ  = 𝛿𝜎  ,                (59) 

 

Equation (59) can be used to establish the size -of the geologic structure being modeled if the 

model ratios of strength and density are known. 



22 

 

Description of experiments 

 

Properties of modelling materials –  
 

The composition of the materials used in the experiments was: 

Material 1 Beach sand 

Material 2 Beach sand 85 per cent, clay 15 per cent (QM-4   Kentucky-Tenn. 

Clay Co.) 

Material 3  Coarse St-Peter sand (Ottawa Silica / Sands, flint shot) 

Material 4 Fine St-—Peter sand (Ottawa Silica Sands, #102) 

Density values for the two degrees of compaction used in the experiments were: 

 Uncompacled Compacted 

Material 1 1.3 gms/cm
3
  1.6 gms/cm

3
 

Material 2 1.3gms/cm
3
  1.7 gms/cm

3
 

Material 3 1.5gms/cm
3
 1.7 gms/cm

3
 

Material 4 1.4gms/cm
3
 1.7 gms/cm

3
 

 

Figure show, relative change in maximum displacements at layer boundaries with change in layer 

dimensions. The first value is an average density for the material, when it is poured into a 

container. The second value is an average density for the material when moderately tamped (at 

approximately ͳͲ,ͲͲͲ ݀ݏ݁݊ݕ/ܿ݉ଶ). 

 No water was added to any of the materials used. However, a small percentage of 

moisture was absorbed from the air. Water-content measurements showed that (1) 2.4 per cent of 

weight of the clay in Material 2 was rater/and (2) Ͳ.ͻ ࢘ࢋ𝒄࢚ࢋ of the total weight of Material 2 

was water. 
 

The distribution of grain sizes in the materials shown in Figure 12. Numerical values 

were assigned for the degree of roundness and sphericity of the sand grains by comparing the 

grain shapes with published charts (Krumbein and Sloss, ͳͻͷͳ, p.81).Grains which approach 

a perfect sphere have the highest  values of roundness and sphericity (maximum value equals 

1.0). 

 Roundness Sphericity 

Range Average Range Average 

Material 1 and 2 0.1-0.9 0.45 0.3-0.9 0.65 

Material 3 0.8-1.0 0.90 0.8-1.0 0.90 

Material 4 0.1-9.0 0.65 0.3-0.9 0.70 

  

Measurements of the strength of the modeling materials were made in two ways. In the 

first, the fracture characteristics for the material, 𝝉 and 𝝓 ,were determined by placing the 

material in a rectangular container and removing the support for one vertical edge. The angle of 

fracture caused by removal of support at one vertical edge is related to the angle of internal 

friction by 
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Figure 7 . Category I: Effect of Layer Dimensions and Poisson's Ratio on Displacements at Layer 

Boundaries. A show relative change in maximum displacements at layer boundaries with change in layer 

dimensions; B   show relative change due to change in value of Poisson’s ration. 
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Figure 8 . Category III: Effect of Layer Dimensions ox Displacements at Layer Boundaries. 

 

 

 
Figure 9.  Example Il a: Fracture Point Location as a Function of Layer Fracture Characteristics.Location of 

fracture point in example IIa (F1 or F2 on Figure 6B ) is a function of fracture characteristics of the material 

of the layer. 

 



25 

 

 

 

 
 

Figure 10 . Example IIIa, Diagrams: ,A—Displacement Field; B—Stress Distribution; C—Distortional 

Stain-Energy Density. In example IIIa, the lower boundary of an elastic layer 5 kilometer thick and 15.7 

long undergoes half a wave length of sinusoidal vertical displacement and half a wave length of sinusoidal 

horizontal displacement (90
º
 out of phase with the vertical). 
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Figure 11 . Category III: Effect of Layer Dimensions on Displacements at Layer Boundaries.Figure shows 

relative change in maximum displacements at layer boundaries with change in layer dimensions . 

 
 𝜃 = Ͷͷ°− 𝜙ଶ ,               (60) 

 

If the material possesses cohesive strength, an unsupported vertical edge of a thin layer will stand 

without fracturing. The maximum thickness or critical height ሺࢎ𝒄࢘ሻ without fracture is related to 

the cohesive strength (Tschebotarioff, ͳͻͷʹ , p. 169 - 172): 𝜏 =  𝜌𝑔ℎ𝑐𝑟ସ ୲a୬ 𝜃,               (61) 

 

(Equations (60) and (61) assume the special linear case of the Mohr fracture criterion.) Equation 

(61) does not consider the horizontal tensile stresses introduced by movement of material prior 

to fracture. These horizontal tensile stresses are located near the surface close to the unsupported 

edge. In as much as the tensile strength of granular materials is low, vertical tensile fractures 

form at the surface before shear fracture occurs lower in the layer. Formation of the tensile 

cracks reduces the critical height. The maximum depth of the cracks is estimated to be one-half 

the critical height (Tschebotariofif, ͳͻͷʹ, p. 171). Thus, the maximum effect of the tensile 

cracks can be considered qualitatively by multiplying the observed critical height by ͵ ʹ⁄ . 
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Figure 12 . Distribution of Grain Sizes in Modeling Materials 

 

This method was applied to all modeling materials with the following results: 

 

 Uncompacted Compacted 𝜏(dynes /cm
2
) 𝜙 𝜏(dynes/cm

2
) 𝜙 

Material 1 0 34° 0 54° 

Material 2 140-210 42° 1100-1700 58° 

Material 3 0 22° 0 45° 

Material 4 0 27° 0 52° 

 

The strength measurements were taken under conditions similar to those used in the ex-

periments. In the uncompacted tests, material was poured into the box. In the compacted tests, 

material was placed in the box by layers which were moderately tamped (ܽݔݎ𝑖݉ܽݕ݈݁ݐ >ͳͲ,ͲͲͲ ݀ݏ݁݊ݕ/ܿ݉ଶ) after each layer was added. 

 

The second procedure used for measurement of strength was the controlled-strain shear 

test (Tschebotarioff, ͳͻͷʹ, p. 143-145). With these tests, the shear strength of Material 2 was 

determined under very low confining pressures. Tests were conducted for two degrees of com-

paction, strong and moderate (Figure 13). The material fractures according to the special linear 

case of the Mohr criterion. Although the data are scattered at low normal stresses, the best curves 

drawn by eye give the following values of 𝜏 and 𝜙 for Material 2: 

 

    Strong Compaction Moderate Compaction 𝜏 4000 dynes/cm
2
 1000 dynes/cm

2
 𝜙 53° 40° 

 

Also plotted on Figure 13 are data for con-trolled-strain shear tests on moderately compacted dry 

clay.  
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Model apparatus - The model experiments were performed in a rectangular box (inside 

dimensions 44.5 by 22.8 by 11.4 cm) with glass sides and wooden ends (PL 1). The bottom of 

the box was fitted with three felt-edged blocks for experiments that required steps in vertical 

displacement at the base of a layer. Each block could be moved independently in the vertical 

direction by four screws projecting through the bottom of the box. 

 

The bottom of the box was fitted with a felt-edged rubber pad for experiments that 

required gradual changes in vertical displacement at the base of a layer. The central and end 

portions of the rubber pad could be moved independently in the vertical direction by screws 

projecting through the bottom of the box. 

At the two ends of the box were vertical blocks, which followed the vertical movement of 

the end blocks or end portions of the rubber pad. This feature eliminated the drag which would 

occur if the ends of the box were fixed. 

 

One feature of the apparatus may influence the experimental result the drag of the 

material along the glass face. Theoretically this drag should be zero if the model is to represent 

accurately the deformation normal to the long axis geologic structure. Controlled-strain hear tests 

were performed to find the coefficient of friction between Material 2 and a glass surface (Figure 

13). The normal stress of Material 2 against the glass face in the box angled from Ͳ 

to ͳͲ,ͲͲͲ ݀ݏ݁݊ݕ/ܿ݉ଶ. The maximum coefficient of friction for this range of normal stress is 

0.12. This agrees closely with the coefficient of friction for quartz grains moving over a solid 

quartz plate (Tscheboarioff, ͳͻͷʹ , P. 122-124). Inasmuch as the measured coefficient for 

Material 2 moving layer a glass surface was only one-fifth to one twenty-fifth the coefficient of 

friction of Material 2 over Material 2, drag along the glass face probably did not have a major 

influence on the experimental results. 

 

Experimental procedure - Material was placed in the box in successive layers Ͳ. − ͳ.ʹ ܿ݉ 

thick. These layers were separated by thin marker lines of flour or quartz sand dyed black. It 

extended a short distance into the box from the glass face. Two degrees of compaction were used 

after each layer was added—zero and approximately ͳͲ,ͲͲͲ ݀ݏ݁݊ݕ/ܿ݉ଶ. 

 

Displacements were applied to the base of the layer in small increments. Direct and 

oblique photographs (PI.1) of the model were taken between intervals of displacement. In some 

instances, several increments of displacement were recorded in a multiple exposure (Pi. 2). This 

was used to record displacement fields. The total time required for a complete experiment was 

about 1 hour. 

 

Results of experiments 

General statement - Two types of experiments were performed in the model studies.In Type I, a 

broad curve in vertical displacement was applied to the lower boundary of a homogeneous 

layer.In Type II, a step in vertical displacement was applied to the lower boundary of a 

homogeneous layer.Layers of each kind of modeling material were used one or more times in 

both types of experiments.The experiments performed were: 
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Figure 13 . Results of Controlled-Strain Shear Tests 
 

   

Experiments With Material 

 

Total 

Experiments  1 2 3 4 

Type I 1 2 3 1 7 

Type II 2 13 3 1 19 

 

Several figures showing different stages of deformation in the model experiments have 

been used in the discussion of experimental results. These figures are tracings of photo graphs 

taken during the experiments. The coordinates for the figures are the same as those used in the 

numerical examples (see Figure 1). 

 

Type i displacement fields - Figure 14 gives examples of the observed displacement fields. The 

important features of the displacement fields were: 

 

1. No measurable change in the displacement field with a change in the composition of the layer. 

2. An increase in horizontal displacement from the lower to the upper boundary of the layer. 

3. Maximum horizontal displacement at or verv near the point of inflection in the fold ሺܮ= ݔ ʹ⁄ 𝐨𝐫 − ܮ ʹ⁄ ሻ. 
4. A decrease in vertical displacement from the lower to the upper boundary of the layer. 
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ANOMALY 

 

 

Figure 14 .  Displacement Fields - Type I  Experiments 

 

Type i fractures with material 2 - only models in which layers of Material 2 were used 

produced fracturing at large displacements (See No. 9 and No. 19 of Figure 15). The sequence of 

fracture formation with increase in applied displacement was as follows: 

1. Vertical tensile cracks at the crest of the fold. 

2. A series of normal faults at or near the crest of the fold. 

3. Additional normal faults intersecting the surface at progressively greater distances from the 

crest of the fold. 
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The depth of the tensile cracks was not greater than 1 cm and in most cases was much less. The 

major normal faults were straight, had maximum displacement at the surface, and clipped toward 

the axis of the fold. Average dip of the major normal faults was °. 

 

The angle of fracture and the depth of the tensile cracks (equivalent to the unsupported 

height in the strength measurements) can be used to determine the strength of the material in the 

layer at the time of fracture. The computed angle of internal friction from equation (60) is °. 

The computed cohesive strength from equation (61) is ͳͲͲ— ʹͲͲ ݀ݏ݁݊ݕ/ܿ݉ଶ. These values are 

nearly identical to the values found in the strength measurements of un-compacted samples of 

Material 2. 

 

Type i deformation with materials 1 , 3 and 4 - No fracturing was observed in the experiments 

with layers of Materials 1, 3, and 4 .However, a cup-shaped area over the crest of the fold was 

disturbed by the folding (No. 23 and No. 21 in Figure 15). The main features of the disturbed 

zone were blurring of the marker lines, flattening of the upper boundary, and thinning of the 

layer. The thinning over the crest of the fold was about 6 per cent of the original thickness for an 

applied vertical displacement of  𝒄 at ࢞ = , ݕ =  .ܪ

 

Type ii displacement fields - Figure 16 gives examples of the observed displacement fields. The 

important features of the displacement fields were: 

(1) No measurable change in the displacement field with a change in the composition of the 

layer. 

(2) An increase in horizontal displacement from the lower to the upper boundary of the layer. 

(3) Maximum horizontal displacement at or very near ݔ = —  or/ܮ  along any ʹ/ܮ

horizontal line through the layer. 

(4) A progressively less abrupt transition in vertical displacement from the lower to the upper 

boundary of the layer. 

 

Type ii fracture with material 2 - Type II experiments with layers of Material 2 produced 

distinct fractures at large applied vertical displacements (Figure 17). The usual sequence of 

fracture formation with increasing applied typical displacement was: 

 

1. Simultaneous or nearly simultaneous formation of tensile cracks at the upper boundary and 

shear fractures at the lower boundary. 

 

2. Propagation of one or more shear fractures (reverse faults) to the surface and deepening and 

widening of the tensile cracks (Figure 17). 

 

3. Formation of normal faults in the tensile crack zone (No. 12 of Figure 18). 

 

4. Formation of a major normal fault from the tensile crack zone to the edge of the uplifted block 

at the lower boundary of layer (No. 12 of Figure 18). 

 

5. In most of the experiments, a series of reverse faults rather than a single fault formed at the 

edge of the uplifted block. Formation of these fractures followed a definite sequence; pro-

gressively younger fractures started at progressively smaller angles to the vertical edge of the 

uplifted block. The end result was a series of diverging fractures, the oldest starting at about ͺ° 

to the vertical, and the youngest starting vertically. Most of the fractures that started at an 

angle to the vertical propagated only a short distance. Many of these fractures were probably 

undetected in the experiments. Most of the fractures that started vertically eventually extended 
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all the way to the upper surface. The applied vertical displacement that was required to 

propagate a shear fracture all the way to the upper surface was equal to about one-twentieth of 

the total length of the fracture. The same ratio between applied displacement and length of 

fracture (1 to 20) appeared to hold for all intermediate stages in the development of the 

fracture as well. 

 

6. The most interesting feature of the reverse faults (Figures 17 and 18) was the curvature of the 

line of fracture away from the uplifted block. Two factors influenced the curvature of the 

reverse faults, (1) the thickness of the layer, and (2) the number of short reverse faults formed 

before a particular reverse fault propagated to the surface. The influence of the second factor 

on curvature was eliminated by omitting the vertical portion of the fractures in the curvature 

measurements. These measurements were then correlated with an effective thicknessሺ𝑯’ሻ for 

each layer which was equal to the vertical distance over which the fracture actually curved 

(Figure 17). 

 
7. Curvature measurements for three intervals of effective thickness are summarized in Figure 

19. Although curvature measurements in adjacent intervals of effective thickness overlap, the 

mean values in each interval show a small systematic change of curvature with the effective 

thickness of the layer. With a decrease in the effective thickness, the fractures have (1) 

progressively greater curvature and (2) progressively lower dip at the upper surface. 

 

The curvature of the reverse faults was independent of the relative movement of the blocks. In 

one experiment, the center section was allowed to drop while the two end sections remained 

stationary. The reverse faults produced by this mode of displacement were nearly. Be the same as 

the reverse faults produced by keeping the center section stationary and pushing the two end 

sections (Nos. 3, 4, 5 and 8 of Figure 17). 

 

In all Type II experiments with Material 2, displacements occurred along the reverse 

faults after they had reached the upper surface. As a result of this movement, thin wedges of 

material were thrust out over the upper surface of the stationary blocks. In one experiment (Figure 

2 of PI. 2), the horizontal movement of the front of the wedge was Ͳ.ͷ ܿ݉ after a total of ʹ.Ͳ ܿ݉ 

vertical displacement of the lower boundary. 

 

In most of the experiments, vertical tensile cracks appeared at the upper surface at nearly 

the same time as the reverse faults were formed. The measured positions of the tensile cracks for 

three intervals of effective thickness are summarized in Figure 19. There is a systematic shift of 

the crack position with a change in the effective thickness of the layer. 

 

Fracturing in the region of the tensile cracks followed the same pattern as the fracturing 

at the crest of the folds in the Type I experiments. The tensile cracks became deeper and wider 

with increased applied displacement. Eventually the crack reached a critical depth at which the 

material on each side of the crack was unable to support itself, and normal fractures dipping 

toward the tension zone were formed. The maximum depth of the tensile cracks before normal 

faults were formed was ʹ.ͷ ܿ݉. 
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Figure 15 . Fracturing and Folding -Type I  Experiments. 
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Figure 16 . Displacement Fields - Type II Experiments. 

 

The final fracturing in the experiments was the propagation of a steep normal fault (aver-

age dip ૠૡ°) from the tensile crack zone to the edge of the uplifted block. After formation of the 

normal fault, displacement occurred along both the normal fault and the reverse faults. However, 

more displacement occurred along the normal fault than along the reverse faults. 

 

The depth of the tensile cracks and the angle at which the reverse faults intersected the 

upper surface can be used to estimate the strength of the material in the layer at the time of 

fracture. The computed cohesive strength from the depths of the tensile cracks is  −ͷͲͲ ݀ݏ݁݊ݕ/ܿ݉ଶ. The angle of internal friction from the average angle at which the fractures 

intersected the free upper surface (ૢ°) is °. These values are fairly close to those obtained in 

the strength measurements on uncompacted samples of Material 2. 

  
Type ii fractures with materials 1 and 4 - The fracture behavior of layers of .Materials 1 

AND 4 differed in two respects from the fracture behavior of layers of Material 2; (1) tensile 

cracks were not formed (No. 8 of Figure 17); and (2) the reverse faults formed were not sharp 

breaks, but narrow shear zones (No. 25 of Figure (18). The curvature of the shear zones, however, 

was nearly identical with the curvature of the sharp reverse faults produced in the experiments 

with layers of Material 2.1 ayers of Material 1, which has a greater range in grain sizes and more 
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irregularity in grain shape and roundness than Material 4, had narrower zones of fracture than 

layers of Material 4. 

 
Type ii deformation with material 3 - Folding rather than fracturing was dominant in 

experiments in which layers of Material 3 were 4ised. However, there were broad zones in the 

layers where the movement of the sand particles described trajectories which curved away from 

the uplifted block. In addition, ridges were formed on the upper surface similar to house 

associated with the reverse faults in the other experiments. 

 
 

                 Figure 17 . Fractures - Type II Experiments 

 

Summary of experimental results - The displacement fields, at small applied vertical dis-

placements, appeared to be independent of the size, shape, and sorting of the grains used for the 

layers. Fracture, however, was influenced by the properties of the modeling materials. The 

sharpest fractures were formed in layers of material which had cohesive strength (Material 2). 

The next sharpest fractures were formed in layers of material which lacked cohesive strength but 

were composed of poorly sorted, irregular sand grains (Material 1). Layers composed of well-

sorted, well-rounded, and spherical sand grains (Material 3) did not appear to fracture. 

 

The strength of the material in the layer at the time of fracture was nearly the same as 

measured strengths of compacted samples of the modeling materials. Movement of the layer prior 

to fracturing apparently decreased the initial compaction of the material and thus reduced its 

strength. 
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Figure 18 . Fracturing and Folding - Type II Experiments 

 

Geologic interpretation of experimental results 

 

Size relationship between model and geologic structure - The size relationship between a 

model and the geologic structure that it represents is determined from equation (59). The model 

ratios of strength and density must be known to use this equation. Unfortunately, there is no 

means of estimating the strength of extensive layers of sedimentary rock in nature. The strength 

is probably determined to a large extent by the degree of jointing in the layer. Layers of rock 

which have undergone extensive jointing have little or no cohesive strength and probably react to 

applied vertical displacements like layers of Material 1 do in the model experiments. Layers of 

rock, which have not undergone jointing, have a cohesive strength and probably react to applied 

vertical displacements like layers of Material 2 do in the experiments. 
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Figure 19 . Curvature of Reverse Faults in Type II Experiments.Reverse faults in Type II experiments had 

(1) progressively greater curvature and (2) progressively lower dip at the upper surface with a decrease in 

the effective thickness of the layer. 
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A rock layer with no cohesive strength can be modeled with dry sand (similar to Material 

1) which also has no cohesive strength. If the angles of internal friction in the sand and the rock 

layer are equal, the strengths of the layers are identical. However, the cohesive strength of the 

rock layer is zero only if one considers an extensive layer. The individual pieces between joints 

have considerable cohesive strength. The strength of the sand and rock layers will be identical 

only when the dimensions of individual blocks are related to the size of the rock layer in 

somewhat the same manner as the individual grains are related to the size of the sand layer. 

 

Equation (59) cannot be used to establish a size relationship between the model and the 

geologic structure if the rock and the sand layers have no cohesive strength. However, a crude 

size relationship can be obtained by comparing the size of sand grains with the size of joint 

blocks. The mean grain diameter for Material 1 is Ͳ.ʹ ݉݉. A reasonable diameter for a joint 

block is ͳͲ ݉. The size relationship based on the above values is 1 cm of Material 1 equals Ͳ.ͷ ݇݉ of jointed rock. 

          

  A relationship between the size of the model and the geologic structure can be established with 

equation (59) if the layer of rock in the geologic structure has a cohesive strength. A rock layer 

with cohesive strength can be modeled with Material 2 which has a small cohesive strength of ͳͲͲͲ ݀ݏ݁݊ݕ/ܿ݉ଶ and an angle of internal friction of about ͶͲ°. Representative values of 

cohesive strength and angle of internal friction for sedimentary rock are ʹͷͲ × ͳͲ݀ݏ݁݊ݕ/ܿ݉ଶ 

and ͶͲ°. The size relationship, on the basis of the above values, is ͳ ܿ݉ of Material 2 equals ͳ.ͷ ݇݉ of sedimentary rock. 

 

The 𝝉 and 𝜙  values used to establish this size relationship are based on controlled-strain 

shear tests of moderately compacted samples of Material 2 and triaxial tests on small samples of 

sedimentary rock. In the model experiments, the strength of a moderately compacted layer of 

Material 2 is considerably reduced by deformation of the layer prior to fracturing. A similar 

reduction in the strength of a layer of sedimentary rock probably occurs in nature. However, the 

strengths of the two layers may not be reduced in the same proportion. For this reason, the size 

relationship between the model and the geologic structure may change during the course of an 

experiment. 

 

Fractures - The characteristic fracture pattern for Type I experiments is a complex zone of 

normal faults at the crest of the fold (Figure 15). The fractured zone tapers inward to the axis of 

the fold and dies out at depth. The Kettleman Hills anticline (Woodring et al.,ͳͻͶͲ) has this type 

of fracture pattern. 

 

The characteristic fracture pattern for Type II experiments is a series of curved reverse 

faults intersecting the upper surface at low angles, and a series of normal faults in the uplifted 

block (Figure 18). The reverse faults start as vertical faults at the lower boundary but become 

thrusts at the upper boundary. The low-angle or thrust portion of the fracture at the upper surface 

is due to horizontal compressive stresses. However, the horizontal compression is the result of 

vertical movement at depth and not of horizontal compression of the entire layer. 

 

The characteristic fracture pattern formed for each of the two types of experiments is 

perhaps the most significant feature of the model experiments. Each pattern is relatively complex 

in view of the simplicity of the two distributions of applied displacement. The individual 

fractures in each pattern are related. Formation of one fracture triggers another in a definite 

sequence. The type and location of the primary fractures, which initiate the fracture sequence, are 

controlled by the distribution of applied displacement. The type and location of secondary 
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fractures are determined partly by the distribution of applied displacement and partly by 

conditions arising from the formation of the primary fractures. 

 

The manner in which the fracture pattern forms in the two types of experiments suggests 

that other distributions of applied displacement the base of a layer may also lead to distinctive 

fracture patterns. If the models are a true representation of fracturing in nature, fracture patterns 

observed in the models might be compared with fracture patterns observed fracture the surface of 

the earth, and in this manner be used to determine the distribution of displacement at depth. 

 

Comparison of experimental and analytical results 

Type i experiments and category i numerical examples 

 

Displacement fields - The displacement fields in Type I experiments and Category I 

numerical examples are very similar, although this is not immediately apparent 

from an examination of the displacement-field diagrams. Displacement fields in the 

analytical work (Figures 4 A and 5 A) are produced by applied vertical displacements 

which change periodically in amplitude and direction. Displacement fields in the 

experimental work (Figure 14) are produced by applied vertical displacements which 

change   amplitude but not direction. The only major difference between the two 

displacement fields as a uniform displacement in one direction. As previously noted, 

uniform movement of a layer does not change the stress distribution. Therefore, 

superposition of a uniform upward displacement (equal to one-half the total 

amplitude of the applied vertical displacement) on the analytical displacement field 

will bring the two displacement fields into approximate agreement. 
 

           Although the general appearance of the displacement fields is similar, they differ 

considerably in detail. The maximum vertical and horizontal displacements at the boundaries of 

the model and the corresponding theoretical displacements from Figure 7 A 

Ͳ ݂ 𝑖ݐܽݎ ܮ/ܪ ݁݃ܽݎ݁ݒܽ ℎ݁ݐ ݎ݂) − ͺͷ 𝑖݊ ݐℎ݁ ݁ݎ݁ݔ𝑖݉݁݊ݏݐ) are 

 Experimental Theoretical ࢜𝒂࢞.Lower boundary ͳ.ͲͲ𝑩 ͳ.ͲͲB ࢜𝒂࢞.Upper boundary Ͳ.Ͳ𝑩 Ͳ.ͶͲ𝑩 ࢛𝒂࢞.Lower boundary Ͳ.͵Ͳ𝑩 Ͳ B ࢛𝒂࢞.Upper boundary Ͳ.ͲB Ͳ.͵ͲB 

 (equals the maximum applied vertical displacement ܤ)

 
Two factors are responsible for most of the difference between theoretical and experimental 

value above .First, the boundary conditions in the experiments differed slightly from the 

boundary conditions in the analytical examples. In the experiments, the applied vertical dis-

placement did not vary exactly as the cosine of the horizontal distance, and horizontal dis-

placement occurred along the lower boundary. Second, the displacements required in the 

experiments to record the displacement fields photographically were much larger than the 

critical displacements (ܤ) in the analytical work. In nearly all the experiments, there was 

evidence of failure in the layer while the displacement field was being photographed. 
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Fractures - In the experiments with layers of Material2, the position of the vertical tensile 

cracks is the same as the position of the initial tensile fractures predicted in the numerical 

examples. 

 

Type ii experiments and category ii numerical example 

Displacement fields - The general appearance of the displacement fields in Type II experiments 

(Figure 16) and Category II example (Figure 6.4) is very similar if a uniform upward 

displacement (equal to one-half the total amplitude of the applied displacement) is superposed on 

the analytical displacement field. However, the displacement fields differ slightly in detail. Listed 

below are the maximum vertical and horizontal displacements at the boundaries of the model and 

the corresponding theoretical displacements from Figure 8  

 

 :(ݏݐ𝑖݉݁݊ݎ݁ݔ݁ ℎ݁ݐ Ͳ.Ͷ 𝑖݊ ݂ 𝑖ݐܽݎ ܮ/ܪ ݁݃ܽݎ݁ݒܽ ℎ݁ݐ ݎ݂)

 Experimental Theoretical ࢜𝒂࢞.Lower 

boundary 

ͳ.ͲͲ𝑩 ͳ.ͲͲB 

 Lower.࢞𝒂࢛ Upper boundary Ͳ.ͻͷ𝑩 Ͳ.ͺͻ𝑩.࢞𝒂࢜

boundary 

Ͳ𝑩 Ͳ B 

 Upper boundary Ͳ.ͲB Ͳ.B.࢞𝒂࢛

 (Equals the maximum applied vertical displacement ܤ) 

The difference between the experimental and theoretical values is small. In this case, the 

boundary conditions in the experimental work were nearly equivalent to the boundary conditions 

in the theoretical example. Fracturing in the layer while the displacement fields were being 

photographed probably accounts for most of the difference in the experimental and theoretical 

values. 

 
Fractures - The predicted positions of the reverse faults in the Category II numerical example are 

based on the stress distribution in Figure 6B and equation (50). The constant angle obtained from 

equation (50) is the orientation of the reverse faults with respect to the position of maximum 

compressive principal stresses throughout the layer. In as much as the principal stress trajectories 

are curved, the reverse faults will also be curved. In Figure 20, three reverse faults based on the 

stress distribution have been drawn for three different angles of internal friction. Also shown on 

Figure 20 is a shear fracture based on measurements of reverse faults in model experiments which 

were geometrically similar to the numerical examples. The agreement between the experimental 

fracture and the theoretical fracture for a 𝜙 equal to ʹͺ° is very good. A value of ʹͺ° is a 

reasonable average angle of internal friction for the entire layer. 
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Figure 20. Comparisons of Theoretical and Experimental Fractures. The shear fracture determined from Example 

Ha stress distribution (Figure 6 B) and Molar's fracture criterion (with 𝜙 = ʹͺ°) agrees closely with the 

shear fracture in the experiments which were geometrically similar to Example IIa. 

 

The tensile cracks in the experiments do not occur at the positions predicted in the 

analytical work (compare the position of tensile cracks on Figure 19 with the position of ܨଵ on 

Figure 6 B ) .  Apparently the formation of the reverse faults shifts the position of the large 

horizontal tensile stresses closer to the position of the reverse faults. 
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