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ABSTRACT - The Pachmarhis summits, ridges and plateau, indeed all 

protuberant land forms , are  the  features actually  formed due toTempe 



 

 

rature variations due to the formation of the Satpura basin The Perturb 

bation of the thermal equilibrium, produced by subsidence and sedimen-

tation in the earth's outer layers is investigated by means of two models. In 

one the heat reaching the surface is assumed to come from the deep 

interior, in the other, to be generated in the crust. The models consist of 

three horizontal layers, the top one representing the sedimentary layers, 

the middle one representing the crystalline part of the continental crust, 

and the lowest one representing the plastic substratum. It is assumed that 

at a particular instant the thickness of the top layer is increased. A theory 

is developed to determine the subsequent temperature variations. Also, 

asymptotic values are found for large times. A finite subsidence velocity 

introduces an uncertainty in the time of origin of the rapid-subsidence 

model. For events which occur long after the subsidence, the instantaneous 

assumption is adequate. Moreover, it is adequate without this restriction in 

the lower part of the crust and in the substratum. For large times, the 

deviation from the final steady state is a linear function of the depth. When 

the heat comes from the interior, the temperature deviation from the final 

steady state varies as f
3
l
2
, whereas when the heat is generated in the crust, 

it varies as ࢚−/. The temperature variations are evaluated for subsidence 

of  and ࢘ࢋ࢚ࢋ. The sedimentary layer is assumed to be  ࢘ࢋ࢚ࢋ  

thick initially, and the crystalline crust is assumed to be 30 kilometer thick. 

The time variation of the different components of the temperature 

variations gives an insight into the propagation of thermal disturbances in 

the earth. Thermal adjustment requires millions of years. After subsidence, 

the temperature increases rapidly during the first  ࢙࢘ࢇࢋ࢟  or so. 

Thereafter, the rate of increase is much smaller. The increase is much more 

rapid in the sediments than in the lower part of the crust. At the base of the 

crust, the increase is about ° −  °࢘ࢋ࢚ࢋ ࢘ࢋ  of subsidence, if the 

thermal conductivity is .  ࢙ࢍࢉ. However, if the conductivity decrease 

with temperature in the range of crustal temperatures was taken into 

consideration, much larger increases would be obtained. The times 

required for thermal adjustment are large enough to be significant in 

certain geological processes. The temperature increase after subsidence 

should affect the rate of lithification of sediments and the strength of the 

crust. Both the stresses and the temperature of a certain portion of 

sediment increase with subsidence. At depths greater than a few hundred 

feet, the confining stress on the grain matrix corresponds, practically 

without any time lag, to the current depth of burial. On the other hand, the 

adjustment of the temperature lags appreciably. Thus, lithification may be 

incomplete at certain depths because the temperature is still far below its 

final value. Lithification is likely to be completed within the first  ࢙࢘ࢇࢋ࢟  after the subsidence. During the folding stage of a 

geosyncline, the shearing rate of the crustal rocks increases appreciably. 

The crustal "Solid Viscosity" may decrease markedly when the 

temperature reaches the value it has at the base of an undisturbed crust. 

Thus, the crustal strength decreases relatively quickly up to about 20 

million years after the subsidence and thereafter much more slowly. 

Because of this decrease, the folding stage of a geosyncline would occur  −  ࢙࢘ࢇࢋ࢟  after the subsidence. If heat comes from the deep 

interior, there is, for a certain time, a zone of cooling in the substratum. 

The corresponding increase in the solid viscosity of the substratum may 

effectively lock, for a certain time, the subsequent uplift of the crust. 

______________________________________________________________________________ 

 

 



 

 

Introduction 

 

The Satpura Sediments are distributed in   a trough like depression. In most cases 

sedimentation keeps pace with subsidence, so that the trough is constantly filled. Flow of the 

plastic substratum permits the subsidence of the crust. The subsidence of the crust and the piling 

up of sediments in the trough upset the thermal equilibrium. During   the   subsidence, the 

isotherms are displaced downward; when subsidence ceases, they move upward, thus gradually 

approaching their new steady-state positions. Hence, the formation of a basin causes temperature 

variations in the outer layers of the earth. This paper studies these temperature variations.  

 

 Because most rock properties depend somewhat on the temperature, the temperature 

variations obtained here should interest investigators in other fields of geology. Mechanical 

properties such as strength and plasticity depend on the temperature. The evolution of basins 

depends on these properties. Some sediment is buried to great depths by subsidence, and their 

temperature and confining pressure increase. Since temperature and pressure are important for 

lithification, 86a knowledge of the temperature variations should be of interest in dating and 

studying transformation of sediments into indurated rocks.  

 

 The temperature variations depend on the initial or normal temperature distribution in the 

outer layers. There is, however, some uncertainty about this. All the heat reaching the surface 

could be accounted for by radioactive material in the upper ͵Ͳ ݇𝑖݈ݎ݁ݐ݁݉ of the crust. Many 

geologists assume, however, that some heat comes from the deep interior and represents a gradual 

cooling of a once-hot earth. This paper considers both these assumptions about the source of the 

heat.  

 Several studies have been made of perturbations of the temperature distribution in the 

earth's crust. Jeffreys (ͳͻ͵ͳ) investigated the thermal effect of adding to the crust a thick cover of 

sediments, but he determined only the temperature at the base of the sediments and the surface 

gradient. The sedimentary cover was regarded as added instantaneously. He assumed radioactive 

sources of heat were present in the crust and absent in the sediments. Furthermore, he assumed an 

initial distribution of temperature having a constant gradient. 

 

 If the radioactivity were uniformly distributed, the equilibrium-temperature distribution 

would be parabolic in the zone of the radioactive sources. Since Jeffreys was interested only in 

the temperature at the base of the sediments and in the gradients at the surface, the resulting 

discrepancy is not great. However, determination of the temperature variations throughout the 

crust and substratum depends on the initial temperature distribution. Therefore, the temperature 

variations are discussed under the two hypotheses about the nature of the heat. This paper also 

considers the effect of the distortion of the plastic substratum, which is important for the 

determination of the temperature variation in the lower part of the crust. Jeffreys (ͳͻ͵ͺ) and 

Bullard (ͳͻ͵ͺ) studied the effect of topographic inequalities on the geothermal gradients at the 

surface. Except in very mountainous country, this effect is only a few per cent of the normal 

values. Coster (ͳͻͶ) examined the effect of anticlinal structure using an electrical model. 

Benfield (ͳͻͶͻ) and Birch (ͳͻͷͲ) studied the simultaneous effect of uplift and erosion. 

 
Notation 
The following notation is used in this paper: 𝑻  Temperature,°ܥ. ܶሺ𝑖ሻ  Term of 𝑖-th degree in a power expansion of  ܶ. ݐ  Time, sec or ͳͲݎݕ. 



 

 

.ሻ−ଵܥ°Density, ݃ ܿ݉−ଷ. ܿ  Specific heat, ݈ܿܽ ݃−ଵሺ  
 ݇  Thermal conductivity, ݈ܿܽ ܿ݉−ଵܿ݁ݏ−ଵሺ°ܥሻ−ଵ. 𝛼  Thermal diffusivity, ܿ݉ଶܿ݁ݏ−ଵ. ܳ  Rate of heat flow per unit area, ݈ܿܽ ܿ݉−ଶܿ݁ݏ−ଵ.

 ݉  Fraction of the total heat generated in the crust which is conducted to the earth's 

interior. ݍ  Rate of radiogenic-heat generation, ݈ܿܽ ܿ݉−ଷܿ݁ݏ−ଵ.
 
.ଵ−ܿ݁ݏRate of radiogenic-heat generation for second layer, ݈ܿܽ ܿ݉−ଷ  ʹݍ .ଵ−ܿ݁ݏͳ   Rate of radiogenic-heat generation for first layer, ݈ܿܽ ܿ݉−ଷݍ 

  Initial depth of a given horizon of the substratum, measured from the base of the′ݖ .݉݇ Depth, measured from earth's surface, positive downward, ܿ݉ or  ݖ 

crust, positive downward, ܿ݉ or ݇݉. ݖ′ Final depth of a given horizon of the substratum, measured from the base of the 

crust, positive downward, ܿ݉ or ݇݉. ܽ  Depth-attenuation coefficient of the subsidence, ܿ݉−ଵ. ࢎ  Initial depth of the base of the first layer, ܿ݉ or ݇݉. ℎ  Final depth of the base of the first layer, ܿ݉ or ݇݉. ࡴ  Initial depth of the base of the second layer, ܿ݉ or ݇݉.  ܪ  Final depth of the base of the second layer, ܿ݉ or ݇݉. ܵ  Subsidence, ܿ݉ or ݇݉. ܦ  Smallest of the distances from a point to the two faces of a plane parallel slab, ܿ݉ or ݇݉. ܦ   Largest of the distances from a point to the two faces of a plane parallel slab, ܿ݉ 

or ݇݉. Zͳ Reduced value of  ; ݖଵ = ݖ ʹሺ𝛼ݐሻଵ ଶ⁄⁄ ,dimensionless. The addition of the sub-

index 1 to a length symbol will denote division by ʹሺ𝛼ݐሻଵ ଶ⁄ ݑ ,Reduced variable  ݑ . = ሻଵݐሺ𝛼ʹ/ߞ ଶ⁄ .
.ଵ−݉݇ ܥ° ଵ or−݉ܿ ܥ° ,Steady-state temperature gradient when the heat comes from the deep interior ܧ 

 ܶͳ Ultimate temperature increase because of subsidence for Ͳ   ݖ   when the,  ݏ 

heat comes from the  deep interior, ܶͳ = ூܶ∆ .ݏܧ   
or  ∆𝑻ࡵࡵሺݖ, – ሻ. Temperature function, which at t = 0 is equal toݐ ଵܶ in the interval 

   Ͳ   ݖ  ∞ ;  and   which is 𝛥ܶூ  =  Ͳ for ݖ = Ͳ and  ݐ > Ͳ. ∆ܶூூ
   or ∆ܶூூሺݖ, ݐ ሻ. Temperature function, which atݐ = Ͳ is a linear function of z 

between the           

point ݖ = Ͳ,  ∆ܶூூ = ଵܶ and the point ݖ = ூூܶ∆ ,ݏ = Ͳ ; and which is ∆𝑻ࡵࡵ = Ͳ 

for ݖ = Ͳ and ݐ > Ͳ. ∆TIII  or  ∆TIIIሺݏ, ݐ ሻ. Temperature function, which atݐ = Ͳ is equal to the deviation 

from ܶ =  ݖܧ

               produced by the distortion of the substratum. ∆ ܶ or ∆ ܶሺݖ,  ሻ. Temperature deviation from the final steady state, when the heatݐ

comes the deep interior. ∆ �ܶ� or ∆ �ܶ�ሺݖ,  ሻ. Temperature variation from the initial steady state, when the heatݐ

comes from the deep interior. ܶʹ  Ultimate temperature increase in the substratum, when the heat is generated in 

the crust ∆ ܶூ  or ∆ ܶூሺࢠ, ݐ ሻ.Temperature function equal at࢚ = Ͳ to the initial deviation from the 

initial steady state, when the heat is generated in the crust. 



 

 

∆ ܶூூ or ∆ ܶூூሺࢠ,  ሻ.Temperature build-up produced by the radiogenic heat sources࢚

added by the subsidence. ∆ܶூ𝑉 or ∆ܶூ𝑉ሺࢠ, ݐ ሻ.Temperature function, which at࢚ = Ͳ is a linear function of ݖ 

between the point ݖ = Ͳ, ∆ܶூ𝑉 = 𝑻 and the point ݖ = ூ𝑉ܶ∆ ,ݏ = Ͳ and which is ∆ܶூ𝑉 = Ͳ for ݖ = Ͳ and ݐ > Ͳ. ∆ܶ௩ or ∆ܶ𝑉ሺݖ, ݐ ሻ. Temperature function, which forݐ = Ͳ is a linear function of ݖ  be-

tween the point z = 0,  ∆ܶ𝑉 = ଶܶ and the point ݖ = ܪ + ݏ ʹ⁄ , ∆ܶ𝑉 = Ͳ ; and 

which is ∆ܶ𝑉 = Ͳ for ݖ = Ͳ and ݐ > Ͳ. ∆ ܶ  or  ∆ ܶሺݖ,  ሻ. Temperature deviation from the final steady state, when the heat isݐ

generated in the crust. ∆𝑻 or ∆𝑻ሺݖ, ,ࢠ) ሻݐ  Temperature variation from the initial steady state, when the (࢚

heat is generated in the crust. 

 

 

 

Figure 1. Types of Steady Temperature Distribution, (a) due to Heat from the Deep Interior, (b) due to Heat 

Generated in the Crust 

 

Statement of problem 

 
 If the conditions in the vertical plane through the middle of a basin are considered, de-

termination of the temperature variations owing to sedimentation and subsidence can be regarded 

as a one-dimensional problem. This is because the width of a basin is several times the crustal 

thickness, and its length is again large in comparison to its width. 

 

 This paper, therefore, considers three horizontal layers - the top one representing the 

sedimentary layers, the middle one representing the crystalline part of the continental crust, and 

the lowest one a plastic substratum which can be assumed to extend downward to infinity. The 

thermal conductivity and diffusivity are taken to be the same for the three layers. It is assumed 

that the top surface of the uppermost layer is kept at a constant temperature (which may be taken 

as zero) and that before the subsidence, the temperature distribution has reached the steady state. 

The three layers are shown in Figure 1, as well as two alternatives, (a) and (b), for the initial 

temperature distribution. The upward flow of heat from the deep interior, shown at (a), may 

represent either a gradual cooling of an originally hot earth or may be due to other deep heat 



 

 

sources. It will be referred to as heat from the deep interior. For alternative (b) the radioactive 

sources of heat are assumed to be distributed with different but uniform densities in the two 

uppermost layers. 

 

 At a particular instant the thickness of the top layer may increase, owing to deposition of 

sediments, assumed to be laid at zero temperature- If the topmost surface is taken as a level of 

reference, then the two topmost layers are displaced downward. If the subsidence occurs 

sufficiently quickly, the initial temperature distribution will be bodily displaced with the material 

but otherwise will be practically unchanged. This will be termed rapid subsidence. If the 

subsidence occurs slowly, the temperature distribution will readjust continuously. 

  

The equations satisfied by the temperature must be considered. For one-dimensional heat 

flow in an isotropic rigid body with internal heat sources, the temperature satisfies the equation 

given by Carslaw and Jaeger (1948, p. 59, equation 1) 

 ∂T∂t = α ∂మT∂మt + ఘ,                    (1) 

 

where ܽ equals ݇/ܿߩ equals thermal diffusivity, ݇ equals thermal conductivity, ߩ equals density, ܿ equals specific heat, and ݍ equals rate of heat generation per unit volume. 

  

When the body changes shape simultaneously with heat flow, equation 1 must be modified. If, 

around a volume 𝑉,a closed surface S is displaced by the distortion of the body, the balance of 

heat across S gives the following equation: 

 ∫ ሺ௦ሻ ݀ܽݎ݃ ݇  ܶ . ݀ܵ = ௗௗ௫ {∫ ሺ𝑉ሻ ܶ ܿߩ ݀𝑉}.                (2) 

 

In this equation ݀/݀ݐ represents differentiation following the elements of the volume. When the 

volume 𝑉 is very small, the equation reduces to 

 ݇ ݀𝑖݀ܽݎ݃ ݒ ܶ = ܿߩ  ቀ𝜕𝑇𝜕௧ + 𝜕𝑇𝜕௦  ௗ௦ௗ௧ቁ ,               (3) 

 

where ݀ݏ is the displacement in the direction of the motion. The density  is taken to be in-

dependent of time. From equation 3, 

ݐ�𝜕�  = 𝛼 ቆ∂ʹT∂ʹx + ∂ʹT∂ʹy + ∂ʹT∂ʹzቇ − ݒ  (4)                , ݐ�𝜕�

 

where ݒ is the velocity, When the problem is two-dimensional, both with respect to heat flow and 

distortion, one of the second derivatives of  ܶ can be made zero by choosing one axis, say ݕ, 

along the length. Furthermore, in the particular case of a subsiding basin, another axis, say ݖ, can 

be chosen in the vertical plane along its axis. On the axial zone, the isotherms will be very nearly 

horizontal planes, hence, 
∂మT∂ ௫మ ≃ Ͳ. Also, the velocity will have only ݖ components. Therefore, 

according to Carslaw and Jaeger (1948, p. 127). 

ݐ�𝜕�  = ∂ʹT∂ʹz + ݒ  (5)                   .ݖ��ܶ��

 

 



 

 

Theory of rapid subsidence 
General considerations 
 

The model in which the heat comes from the deep interior will be considered first. For 

cooling of a once-hot earth, it can be verified that after ʹͲͲͲ ݉𝑖݈݈𝑖ݏݎܽ݁ݕ ݊ the gradient is 

practically constant down to a depth of more than ʹͲͲ ݇𝑖݈ݏݎ݁ݐ݁݉.Only that part of the 

temperature profile above about ͳͷͲ ݇𝑖݈ݏݎ݁ݐ݁݉ depth is really important for the determination 

of the temperature variations. Hence, there is no serious error in assuming a uniform gradient, 

denoted here by ܧ, to represent the heat flow coming from the deep interior. 

 

 The subsidence of the crust is accompanied by a downward displacement of the initially 

linear temperature distribution. Since the deformation and flow of the substratum must tend to 

zero with increasing depth, the temperature at great depth is not affected initially by the 

subsidence. Therefore, the initial temperature distribution ܶ =  is replaced by a distorted ,ݖܧ

distribution, which corresponds to the line ܱܤܣ and the curve ܥܤ in Figure 2A, (1). The curve ܥܤ at sufficiently great depth approaches the original distribution. 

 

 The distorted distribution can be replaced by (1) distribution = ∆  plus (2) deviation , ݖܧ ܶ . The first distribution represents a steady state which is maintained by the new heat that 

comes from the hot interior and does not need further study. The second is a transient effect that 

gradually decays to zero. The transient effect will be discussed hereafter.  

 

 In the other model, the heat is produced by radioactivity of the crust. For the analysis of 

the problem a distinction should be made between old and new radiogenic heat. The old heat is in 

the ground prior to the subsidence; the new heat is generated after the subsidence. The old 

radiogenic heat is represented by the initial temperature distribution. The sedimentary layer is 

assumed to have a homogeneous distribution of radiogenic heat sources , and the crust a 

similar kind of distribution,  (Figure 1). The error introduced by assuming that  and  are ܿݏݐ݊ܽݐݏ݊ is very small because the half lives of the radioactive elements involved are much 

larger than the times of interest here. 

 

The steady-temperature distribution produced by the radioactive sources is obtained by 

solving the differential equation 

 ݇ dమTdమz +  q = Ͳ.                  (6) 

 

There are five boundary conditions to satisfy, namely ܶ = Ͳ at ݖ = Ͳ, [ܶ] = Ͳ at ݖ = ℎ 

and at ݖ =   and [݇ d Td z]ܪ = Ͳ at ݖ = ℎ and at ݖ =  .The symbol [  ] denotes the change acrossܪ

a boundary of the quantity enclosed by the symbol. The integration of equation 6 introduces six 

arbitrary constants. Since the boundary conditions are only five, one arbitrary constant remains 

undetermined. This constant corresponds to flow of heat coming from below the radioactive 

layers. The part of the solution which corresponds to the radiogenic heat only is 

 ܶ = ͳܼʹʹ𝓀ݍ = ቀℎͲݍͳ+ܪͲݍʹ−ℎͲݍʹቁݖ𝓀 ,                 (7a) 

 ܶ =  − మ మଶ  +  మுబ௭ + ℎబమሺభ−మሻଶ ,             (7b) 

 



 

 

ܶ = ሺℎబమ+ுబమమ−ℎబమమሻଶ ,                  (7c) 

 

for the first, second, and third layers, respectively. These equations describe the initial 

equilibrium-temperature distribution which is rigidly displaced by the subsidence. Since no 

radioactive sources are assumed to exist in the substratum, the equilibrium temperature there is 

constant. Hence, there is no distortion of the temperature profile due to the deformation of the 

substratum. 

 

 The displaced temperature distribution can be considered as the superposition of the 

initial plus a transient distribution −𝛥 ܶூ (Figure 2 B). Furthermore,the subsidence alters the dis-

tribution of radioactive matter because of the displacement of the crust and of the thickening of 

the sedimentary layer. This alteration is 

equivalent to the addition of two radioactive slabs, one extending from ݖ = ℎ to  ݖ = ℎ +  and ݏ

with sources (ݍͳ − ݖ and the other extending from (ʹݍ = ݖ  toܪ = ܪ +  ଶ asݍ and with sources ݏ

shown in Figure 2B. 

 

 Therefore, the total deviation Δ𝑻࢈from the new equilibrium condition is the sum of (1) 

transient term  𝜟𝑻ࡵ࢈  and (ʹ) what is left of the ultimate temperature build-up, namely −|∆ ܶூூ|, 
produced by the new heat sources. The symbol ∆ ܶூூ denotes the temperature build-up produced 

by these sources. 

 

Model in which the heat comes from the deep interior 

 
Initial conditions - In the model in which the heat comes from the deep interior, the temperature 

variation, OABC at (1) in Figure 2A, immediately after a subsidence s, is the superposition of the 

steady-temperature distribution ܶ = ݖܧ , plus the temperature distributions ∆  ܶூሺݖ, Ͳሻ , ∆ ܶூூሺݖ, Ͳሻ, 

and ∆ ܶூூூሺݖ, Ͳሻ as shown at (2) and (3) in Figure 2A. The symbol ∆  ܶூூሺݖ,  ሻ denotes theݐ

temperature function which is the decay of an initial distribution ∆  ܶூሺz, Ͳሻ. The sum ሺ∆  ܶூ  + ∆  ܶூூሻ represents the perturbation produced by the surface, and ∆ ܶூூூ represents the perturbation 

produced by the base of the crust and by the deformation of the substratum. 

 

The definitions of ∆  ܶூ, ∆ ܶூூ and ∆  ܶூூூ  for ݐ = Ͳ are as follows: (1) ∆  ܶூሺݖ, Ͳሻ, is a func-

tion which has a constant value − ଵܶ from ݖ = Ͳ to ݖ = ∞ ; (2) ∆  ܶூூሺݖ, Ͳሻ is a linear function of ݖ 

which extends from ݖ = Ͳ, where it has the value ଵܶ, to ݖ =  where it is zero, and which is zero ,ݏ

elsewhere; that is, 

 

 ∆  ܶ ூூሺz, Ͳሻ = ଵܶ ቀͳ − ௭௦ቁ, 

                    

 ሺͲ   ܢ   ;ሻݏ

 

and (3) ∆  ܶூூூሺݖ, Ͳሻ is a function which results from the deformation of the substratum; it extends 

over the range ݖ   .ܪ

 

Determination of ∆𝐓 𝐈 - The term ∆  ܶூ is easy to consider. The temperature distribution in a semi-

infinite solid whose surface is kept at zero temperature and whose initial temperature is −ܶͳ(constant) is given by Carslaw and Jaeger (1948, p. 41, equation 4) as 

 ∆  ܶூ = −𝑻 ࢠ  ࢌ࢘ࢋ,                (8) 



 

 

 

 

 
 

Figure 2 . Effect of a Rapid Subsidence on Temperature Distribution. In A, heat comes from the deep 

interior; the deviation from the initial condition is resolved in partial terms shown at (2) and (3). In B, neat 

comes from a radiogenic source; (1) shows initial condition, (2) shows displaced-temperature distribution. 

  

where ݖଵ =  ሻଵ/ଶ.Throughout this paper, a sub index 1 is added to a length symbol toݐሺ𝛼ʹ/ݖ

denote division by ʹሺ𝛼ݐሻଵ/ଶ.The term ܶͳ is ܶͳ =  .ݏܧ

 

Determination of ∆ܶூூ
 - The value of ∆ܶூூ  

- is determined by considering an infinite solid with 

an initial temperature distribution ݂ሺݖሻ equal to ܶͳ(ͳ − ݖ ⁄ݔ ) in the interval Ͳ   ݖ   and equal ݏ 



 

 

to −ܶͳ(ͳ − ݖ ⁄ݔ ) in the interval Ͳ  ݖ  ݖ With these two distributions, the temperature at .ݏ− = Ͳ is constantly zero, as required by one of the boundary conditions. The temperature in an 

infinite solid, when the initial temperature distribution is ݂ሺݖሻ, is given by Cars law and Jaeger 

(1948, p. 34, equation 1) as 

 ܶ = ଵଶ√గ𝛼௧ ∫ ݂ሺݖଵሻ+∞−∞  . ݔ݁ {−(௭−௭భ)మସ𝛼௧ }  (9)                  ݐ݀

 

If ࢌሺࢠሻ is replaced by the function indicated and the equation is integrated, 

 ∆ܶூூ = ଵܶ {𝑖ଵ݂݁ܿݎሺݖ − ሻଵݏ − 𝑖ଵ݂݁ܿݎሺݖ + {ሻଵݏ ଵݏʹ − ⁄ଵݖ݂ܿݎ݁ ܶ ,               (10) 

where ࢠ =  ሻ, etc., and࢚ሺ𝜶/ࢠ 
 erfc is the first integral of the error function (Hartree, 1935, 

p.85). 

 

APPROXIMATION FOR LARGE t -An initial temperature distribution ࢌሺࢠሻ and the corresponding anti 

symmetrical one in order to have 𝑻 =  at ࢠ =  are now considered. If the distribution is anti 

symmetrical and it extends only throughout finite values of ࢠ, then the asymptotic value of the 

temperature obtained from equation 9 is 

 ܶ = ௭𝑀ଶ√గሺ𝛼௧ሻయ మ⁄ ,                  (11) 

 

Here ܯ is the first moment with respect to the ݖ = Ͳ  plane of that part of the temperature 

distribution ݂ሺݖሻ lying on the positive side of ࢠ = . Hence, for large, the distribution becomes 

linear in ࢠ and decays as −/. For the particular case of ∆ܶ 

 ∆ܶூூ = ʹ ଵܶݔଵଶݖଵ/͵√(12)               .ߨ 

 

Determination of ∆𝐓𝐈𝐈𝐈
 - Determination of the actual deformation of the substratum produced by 

the subsidence of the crust requires consideration of the shape assumed by the crust and also the 

variation, in the substratum, of the viscosity and the strength with depth. Furthermore, the melting 

point may be reached at a depth of about ૡ ࢘ࢋ࢚ࢋ (Gutenberg, ૢ). 

 

 These complexities can be avoided if it is assumed that the displacement at a certain 

depth, corresponding to a small subsidence of the crust, decreases exponentially with the depth 

below the crust and further that if the crust is progressively displaced downward, the small 

incremental displacements are described by the same law. This kind of deformation requires 

thinning in the ࢠ direction and spreading in the horizontal directions. 

 If the vertical displacements are referred to a vertical axis ࢠ′ directed downward, with its 

origin at the base of the crust, and ∆s is an elemental subsidence of the crust, then 

′ݖ∆  = ͳ}ݏ∆−  −  ሻ}.              (13)′ݖܽ−ሺ ݔ݁

 

The parameter a introduced in this equation is a depth-attenuation coefficient. The integration of ∆࢙, as given by equation 13, from S = Ͳ to S =  after the result is transformed, gives ,ݏ 

 zͲ = z + ͳa log[ͳ + {expሺ−asሻ − ͳ} . exp{−aሺz − Hሻ}] ,          (14) 

 



 

 

where now zͲ and z  are the initial and final depths, respectively, below the earth's surface of a 

layer P (Figure 3 ). For a rapid subsidence, a temperature T at depth so is carried to depth z.That 

is, if 𝑻 = 𝑬ࢠis the initial temperature distribution, then after the subsidence 

 𝑻 = 𝑬ࢠ + 𝑬ࢇ ]ࢍ {ሻ࢙ࢇ−ሺ࢞ࢋ} + −  . ࢠሺࢇ−}࢞ࢋ −  ሻ}].            (15)ࡴ

 

The second term on the right side is the distortion with respect to the initial steady state. The 

deviation ∆𝑻ࡵࡵࡵ with respect to the final steady state is Es minus this distortion, i.e., 

 ∆𝑻ࡵࡵࡵ = Ea log[exp as − ሺexp as − ͳሻ . {−aሺz − Hሻ} ] .           (16) 

 

This term is positive, as shown at (3) in Figure 2A. 

 At ࢚ = Ͳ, the distribution ∆ܶூூூ  for z≥ H is considered, and, so that the boundary con-

dition ∆ܶூூூ = Ͳ   at ࢠ = Ͳ may be satisfied, its anti symmetrical for ࢠ   is added. With  ܪ−

these two distributions, the temperature at any time t can be deduced from equation 9. The 

argument of the logarithm in equation 16 is denoted by ሺͳ +  ሻ.It is easy to verify, for the range࢞ 

of values of the different quantities which enter into it, that ݔ is at most a fraction of ͳ. Thus, the 

approximation logs (ͳ + (࢞ ≃  can be used. With this approximation the integration of equation ࢞

9 gives  

 ∆ܶூூூ = ଵܶ{ߠሺܪ + ,ݖ ሻݐ − ܪሺߠ − ,ݖ  ሻ},             (17)ݐ

 

where 

,ݖሺߠ  ሻݐ = ͳ⁄ʹ [expሺܽݏ + ܽଶ𝛼ݐሻ .  {ͳ − erfሺܽ√𝛼ݐሻ + erf ʹ⁄ݖ √𝛼(18)         .[{ݐ 

 

A useful asymptotic value of  ∆𝑻ࡵࡵࡵ, obtained by expanding ࣂሺݖ, (ݐ𝛼) ሻ in powers ofݐ
-1/2 

and letting ݐ increase, is 

 ∆𝑻ࡵࡵࡵ = 𝑻. [ ௭√గ𝛼௧  −  ௭య+ଷுሺଶ+ுሻ௭ଵଶ√గሺ𝛼௧ሻయ/మ ],               (19) 

 

Furthermore, the asymptotic value of the surface gradient is 

 ( ݖ݀݀ Ͳ=ݖ(ܫܫܫܶ∆ = ܶͳ. [ ͳ√ߨ𝛼ݐ  ሻ͵/ʹ].               (20)ݐሺ𝛼ߨ√ሻͶܽܪܽ+ʹሺܪ −

 

Therefore, for large t, ∆ܶூூூ varies as ݐ−ଵ/ଶ, i.e., less rapidly than ∆ܶூூூ, which varies as ࢚−/. 

 

Model in which the heat is generated in the crust 

 

Transient temprature distribution ∆ ܶூ - In the analysis of the effect of rapid subsidence on the 

model in which heat is generated in the crust, it was found that a part of the disturbance is a 

transient temperature distribution ∆ ܶூ (Figure 2B). 

 

 Prior to the subsidence, the temperature distribution is assumed to have reached the 

steady state; this is described by equations 7a-7c. The temperature distribution in the crust, when 

the initial distribution is rigidly displaced through a distance s, is obtained by replacing z by 



 

 

ሺܼ − ܵሻ in equation 7b. Therefore, in the range ݏ  ∆ , the differenceܪ ݖ ܶூ of the two dis-

tributions is a linear function of ݖ, namely ∆ ܶூ = − మ௦ ݖ + మ௦ଶ ሺݏ +  ሻ,        (21)ܪʹ

 

and is represented by the line AB in Figure 4. It is also practically linear in the range Ͳ  ݖ   .ݏ

 

 

                           

Figure 3 . Distortion of the Temperature Profile in the Substratum after  Rapid Subsidence 

 

The distribution described by equation 21 gives ∆ ܶூ = Ͳ at ݖ = ܪ + ∆ ,In the interval Ho  z  H .ʹ/ݏ ܶூ is an arc of parabola, arc BC, which is tangent to the ݖ −  The arc BC differs .ܥ at ݏ𝑖ݔܽ

very little from the broken line ܥܦܤ. 

 

Thus, Δܾܶܫ
 at ݐ = Ͳ can be considered as the difference of the triangular distributions ∆ܶ𝑉ሺݖ, Ͳሻ  = ̅̅ܨܦܱ  ̅̅ ̅̅  and ∆ܶூ𝑉ሺݖ, Ͳሻ = ̅̅ܨܣܱ ̅̅ ̅̅ . Since the initial form of ∆ܶூூ is also triangular, the 

time decay of the two distributions can be obtained from equation 10 by replacing ܶͳ with ܶʹ and 

by keeping s for and   replacing ݏ by ሺܪ +  ,ሻ for ∆ܶ𝑉ʹ/ݏ
 

The term  ܶʹ, which is equal to ܱ̅̅ܨ ̅̅ ̅̅  in Figure 4, is obtained by making ݖ = Ͳ in equation 21, 

which gives 

 ଶܶ = మ௦ሺ௦+ଶுబሻଶ .                  (22) 

 

 The term T2 is equal to the ultimate temperature increase in the substratum if q1 = q2. 

Also, it has another interpretation. It is easily shown that the steady-state temperature below a 

slab with heat-source intensity q2 extending from ݖ = ݖ  toܪ  = ܪ + .ʹܶ is equal to ݏ  

 

 In the other model the temperature variations were expressed in terms of ܶͳ =  instead ݏܧ

of ܶʹ. If the two models are required to give the same thermal gradient at the surface, the 

following relationship exists: 

 



 

 

ܶͳ =  ுమ−ሺଵ−భ మ⁄ ሻℎబுబ + ௦ ଶ⁄ ܶʹ.                          (23) 

 

Since ݏ/ʹ  ͳݍ  andܪ ʹݍ ≃ ܶʹ⁄  is not too different from  ܶʹ . For this reason, the temperature 

variations for the two models can be compared directly when expressed in terms of ܶͳand ܶʹ. 

 
Radioactive slads - In the preliminary analysis of the radiogenic model the effect of the 

alteration of the initial distribution of radioactive matter was mentioned. This alteration consists 

in the addition of two slab distributions of radioactivity, as shown in Figure 5. 

 

 The temperature distribution generated by these slabs can be determined by considering a 

horizontal slab of uniform thickness which extends from z = ℎ to ݖ =  which contains heat ,ܪ

sources of intensity q and which is in a semi-infinite medium. The following boundary and initial 

conditions exist: ܶ = Ͳ, ݖ = Ͳ for all ݖ. The effect of the slab can be obtained from the solution 

for a plane source of heat of infinitesimal thickness, placed at depth z', and which starts to 

generate heat at ݐ = Ͳ, (Carslaw and Jaeger, 1948, p. 222, equation 8), namely 

 ܶ = ݍ ቀ ௧గ𝛼ቁభమ ݖሺ−}ݔ݁ − {ሻଵଶ′ݖ − |௭−௭′|ଶ𝛼 ݖ| ݂ܿݎ݁ −  ଵ.             (24)|′ݖ

 

In the notation of this formula ሺݍܿሻ is the rate of heat generation per unit area of the 

plane source, which is equivalent in the notation of this paper to ݖ݀) ′ݖ݀ݍ′ is the thickness of the 

elementary slab). Formula 24 is valid for an infinite body and satisfies the initial condition ܶ = Ͳ 

at ݐ = Ͳ. 

 
 

Figure 4 . Transient Distribution ∆ ܶூ   at ݐ = Ͳ. 

 



 

 

 

Figure 5 . Radioactive Slabs 

 

 The temperature produced by a slab extending from z = ℎ to ݖ =  in an infinite body is ܪ

obtained by integration of the temperature produced by the elementary slab. The expression |ݖ— — ݖ| erfc |′ݖ ′ଵݖ | IS in all cases positive and is a function of the distance of the point where 

the temperature is measured to the elementary slab. Then, the effect of the term that contains it is 

symmetrical with respect to the slab. To avoid confusion of signs it is better to express the results 

in terms of the greatest and the smallest distances ܦ and ݀, respectively, of the plane ܲ where the 

temperature is measured to the faces of the slab. If ܲ  is inside the slab, ܦ is the distance to the 

face chosen as upper, as shown in Figure 6. 

 

When ܲ is outside the slab, either ܲ𝑖 or ܲ݃ in Figure 6, then 

 

T =ʹܿߩݐݍ (𝑖ʹ݂݁ܿݎ ݀ͳ − 𝑖ʹ݁ܦ ݂ܿݎͳ),              (25) 

 

when ܲ is inside the slab, 

 ܶ = ௧ఘ ሺͳ − ʹ𝑖ଶ݁ܦ ݂ܿݎଵ − ʹ𝑖ଶ݂݁ܿݎ ݀ଵሻ,            (26) 

 

where 𝑖ʹ
ଵܦ and ,݊𝑖ݐܿ݊ݑ݂ ݎݎݎ݁ ℎ݁ݐ ݂ ݈ܽݎ݃݁ݐ𝑖݊ ݀݁ݐܽ݁݁ݎ ݀݊ܿ݁ݏ ℎ݁ݐ ݏ𝑖 ݂ܿݎ݁   .ሻଵ/ଶ, etcݐሺ𝛼ʹ/ܦ=

To satisfy the boundary condition at ݖ = Ͳ, a slab is added which is the image with respect to the ݖ = Ͳ plane of the ሺ+ݍሻ slab, but of intensity ሺ—  ,ሻ. Thereforeݍ

 ܶ = ଶ௧ఘ {𝑖ଶ݂݁ܿݎ ݀ଵ − 𝑖ଶ݁ܦ ݂ܿݎଵ + 𝑖ଶ݂݁ܿݎሺℎ + ܪ + ݀ሻଵ − 𝑖ଶ݂݁ܿݎሺℎ + ܪ −  ሻଵ},         (27)ܦ

 

for the temperature between the surface and the slab (point ଵܲ, Figure 6); 

 ܶ = ௧ఘ {ͳ − ʹ𝑖ଶ݁ܦ ݂ܿݎଵ − ʹ𝑖ଶ݂݁ܿݎ ݀ଵ + ʹ𝑖ଶ݂݁ܿݎሺℎ + ܪ + ሻଵܦ − ʹ𝑖ଶ݂݁ܿݎ ሺℎ + ܪ −  ሻଵ},   (28)ܦ

 

for the temperature inside the slab (point ଶܲ, Figure 6); and 



 

 

T = ଶ௧ఘ {𝑖ଶ݂݁ܿݎ ݀ଵ − 𝑖ଶ݁ܦ ݂ܿݎଵ + 𝑖ଶ݂݁ܿݎሺℎ + ܪ + ሻଵܦ − 𝑖ଶ݂݁ܿݎ ሺℎ + ܪ −  ሻଵ},       (29)ܦ

 

for the temperature below the slab (point ଷܲ, Figure 6) 

 

For large ݐ, i.e., small values of 𝜇, it is useful to expand 𝑖ଶ erfc 𝜇 in the power series 

 𝑖ʹ݁ݑ ݂ܿݎ = ͳͶ − ߨ√ݑ + ʹʹݑ −  (30)               .  .  . ߨ√͵͵ݑ

 

In equations 25-29, the 𝑖ଶ݂݁ܿݎ terms are multiplied by ʹܿ/ݐݍ. Hence,when ݐ  → ∞ ,the terms in 

the first power of "ݑ" increase without bounds. Since these terms do not cancel out in equations 

25 and 26, the temperature increases indefinitely with time when the medium is infinite. 

However, the u terms in equations 27, 28, and 29 cancel out. Therefore, for a semi-infinite 

medium, with the boundary condition ܶ = Ͳ at ݖ = Ͳ, the temperature does not increase 

indefinitely. 

 

 The ݑଶ terms are independent of time, and they must represent the steady state. In fact, it 

is easy to verify that the ݑଶ terms in equations 27, 28, and 29 lead to equations ܽ − ܿ, after 

allowance for changes of notation. The ݑଷ terms decrease as ݐ−ͳʹ
 on separating these terms, the 

same value 

 ሺܶଷሻ = − k√గ ሺܪଶ − ℎଶሻݖଵ,                (31) 

 

is found for the temperatures above, inside, and below the slab. The subscript (3) denotes the part 

of ܶ corresponding to the terms. For a given time, ܶሺ͵ሻ varies linearly with ݖ . 
 

Since the coefficient of ݑͶin the series of equation 30 is zero, the addition of ܶሺ͵ሻto the 

steady state gives quite accurate values of the temperature, even for relatively large u. This is well 

illustrated in Figure 11, where the deviation from the steady state for ݐ = ͷͲ × ͳͲହ ݎݕ and greater 

times is practically linear in z. The formulae derived for the radioactive slab are of course 

applicable to heat sources other than radioactive heat sources. 

 

 
 

Figure 6 . Convention about Distances D and d 



 

 

Radiogenic heat conducted to the earth’s interior - Inspection of the temperature build-up 

curves for radioactive slabs close to the earth's surface (Figure 10, 11) demonstrates that most of 

the heat generated during the life of the earth must have been lost at the surface. 

 

 A layer with sources of intensity ݍ, which extends from the surface to a depth ܪ, may be 

assumed to represent the radioactive part of the crust. The heat conducted to the surface per unit 

of horizontal area is 

 ܳሺݐሻ  = ∫ kሺ∂T/ ∂zሻz=t  (32)              .ݐ݀

 

By introducing ቀ𝜕𝑇𝜕௭ቁz=derived from equation 27, carrying out the integration, and expanding in 

powers of ܪଵ =  ,ሻଵ/ଶ, one can find for long times that the heat conducted to the interiorݐሺ𝛼 ʹ/ܪ

expressed as a fraction of the total heat, is 

 ݉ = ଶ√గ  ଵ,                  (33)ܪ

Table 1 – values of principal parameters. 

 
Parameter Case 1 Case 2 

Subsidence, ݏ  × ͳͲହ𝐜𝐦 ͳ͵ × ͳͲହܿ݉ 

Initial thickness of sediments, h ʹ × ͳͲܿ݉ ʹ × ͳͲܿ݉ 

Initial depth of base of crust, ܪ ͵ʹ × ͳͲହܿ݉ ͵ʹ × ͳͲହܿ݉ 

Thermal diffusivity, 𝛼 Ͳ.ͲͳͲ ܿ݉ଶܿ݁ݏ−ଵ Ͳ.ͲͳͲ ܿ݉ଶܿ݁ݏ−ଵ 

Thermal conductivity, ݇ Ͳ.ͲͲ ܿ݃ݏ Ͳ.ͲͲ ܿ݃ݏ 

Depth-attenuation coefficient of the 

subsidence,a 
Ͳ.ʹ͵ × ͳͲ− ܿ݉−ଵ Ͳ.ʹ͵ × ͳͲ− ܿ݉−ଵ 

 

 If the age of the crust is ʹͲͲͲ × ͳͲ ݎݕ and 𝛼 = Ͳ.ͲͳͲ ܿ݉ଶܿ݁ݏ−ଵ and ܪ = ͵Ͳ ×ͳͲହ ܿ݉, then ݉ =  Ͳ.Ͳ. Hence, only about  per cent of the total heat generated in the crust 

has been conducted to the interior. It can readily be shown that this heat corresponds to an 

average temperature rise of the whole earth equal to 

 ∆ܶ = ଷு𝑖ఘோ  .                  (34) 

 

The new symbols introduced here are R, the radius of the earth, and∆ܶ,  the average rise in 

temperature. Formula 34 assumes that the radioactive crust extends all over the surface of the 

earth. If the values of H and t are introduced, and also ݉ = Ͳ.Ͳ, ߩ = ͷ.ͷʹ ݃ ܿ݉−ଷ, ܿ = Ͳ.ʹͲ cal g−ଵ°C−ଵ, and ܴ = .͵ × ͳͲ8ܿ݉ , then ∆ܶ = ʹʹ°C. The average increase of tem-

perature throughout the earth is only one-fifteenth of the maximum increase (which is attained at’ 
the base of the crust). 

 

 Therefore, the heating produced by the radioactive crust is practically negligible at the 

central zone of the earth even after ʹͲͲͲ ݉𝑖݈݈𝑖ݏݎܽ݁ݕ ݊. This indicates that, as far as the heat 

produced in the crust is concerned, the error arising from the assumption that the earth's surface is 

a plane and that the earth extends to infinity in one direction is not serious. 

 

 

 

 



 

 

Application or rapid-subsidence theory to a basin 
General considerations 
 

 As an application of the rapid-subsidence theory, the temperature variations for specific 

subsidences of  and ͳ͵ ݇݉ are calculated on the assumption that initially there is a layer of ʹ ݇݉ of sediments resting on a crystalline crust ͵Ͳ ݇݉ thick (Figure 1). The same value,  Ͳ.ͲͳͲ ܿ݉ଶܿ݁ݏ−ଵ, is taken for the thermal diffusivities of the three layers. The assumed values of 

the different parameters are summarized in Table 1. The temperature variations are calculated at 

times of Ͳ.ͳ,ͳ,ͷ,ʹͲ,ͷͲ,ͳͲͲand ͵ͲͲ ݉𝑖݈݈𝑖ݏݎܽ݁ݕ ݊ after the subsidence. For comparison of the 

results for the two models, both are assumed to produce the same geothermal gradient at the 

surface. 

 

Components of temperature deviation when the heat comes from the deep interior 
 

It has been shown that when the heat comes from the deep interior the subsidence 

produces a temperature deviation from the final steady state which is 

 

∆Ta= ∆T
I
 + ∆T

II
 + ∆T

III
.               (35) 

 

The term ∆ܶூሺݖ, ݐ ሻ atݐ = Ͳ has the constant value − ଵܶfrom ݖ = Ͳ to ݖ = ∞ .The term ∆TIIIሺݖ,  ሻݐ

at ݐ = Ͳ is linear in ݖ and extends from ݖ = Ͳ where it has a value ଵܶ to ݖ =  .where it is Ͳ ݏ

Finally, the term ∆TIIIሺݖ,  ሻ  is produced by the deformation of the substratum. These temperatureݐ

variations have been expressed in terms of  ܶ ͳ = ݕ݀ܽ݁ݐݏ ℎ݁ݐ ݏ𝑖 ܧ ݁ݎℎ݁ݓ ,ݐ𝑖݊ݑ ݏܽ ݏܧ  𝑖݀݁݊ܿ݁. The temperature ܶͳ is the ultimate temperatureݏܾݑݏ ℎ݁ݐ ݏ𝑖 ݏ ݀݊ܽ ݐ𝑖݁݊݀ܽݎ݃ ݁ݐܽݐݏ−

increase throughout the crust. The variation ∆ ܶ , written in full, 

 ∆ܶܽ = − ଵܶ {𝑖ଵerfcሺz – + ሻଵ – iଵerfcሺzݏ  . {ሻଵݏ  ଵܶ/ʹݏଵ + ሺℎߠ} + ,ݖ ሻݐ − ሺℎߠ − .ݖ {ሻݐ ଵܶ,     (36)  

 

where 𝑖ͳ
erfc is the first integral of the error function, θ is a function defined under Determination 

of ∆TIII, ݖଵ = ଵݏ ሻଵ/ଶ, andݐሺ𝛼ʹ/ݖ =  is  ܪ ;is measured from the surface ݖ ሻଵ/ଶ. The depthݐሺ𝛼ʹ/ݏ

the depth of the base of the crust. 

 

For long times, the asymptotic value of ∆Ta is 

 

 ∆ ܶ = − 𝐸௦(ு+ଷுమ−௦మ)ଵଶ√గሺ𝛼௧ሻయ/మ  .              (37) 

 

Thus, after a long time, the temperature variation behaves as ݐ−ଷ/ଶ. The factor a is an 

attenuation coefficient of the subsidence; ܽ is taken as Ͳ.ʹ͵ × ͳͲ−ܿ݉−ଵ, which corresponds to 

an attenuation of the subsidence at ͳͲͲ ݇𝑖݈ݎ݁ݐ݁݉ below the crust to one-tenth of its value. 

When t and a are large, the temperature variation becomes independent of  ܽ. When ܽ is small, 

the variation increases as ͳ/ܽ. 

 

 The propagation of temperature disturbances in the earth is clarified by examination of 

the components of ∆ ܶ. For this discussion, ଵܶ is taken as ͳ. 

 

 The disturbance produced by the surface is presented by ሺ∆ܶூ + ∆ܶூூሻ. Initially, this term 

increases linearly from Ͳ at the surface to ͳ at a depth equal to the subsidence. Below this depth, 

it is equal to 1. The decay of this surface perturbation is illustrated in Figure 7 for subsidences of  and ͳ͵ ݇݉. The initial break in the gradient is smoothed out very quickly. In fact, in only 



 

 

ͳͲͲ,ͲͲͲ ݏݎܽ݁ݕ, it is smoothed throughout a depth range of about 10 kilometer. After about 5 

million years, the difference between the curves for the two subsidences has practically 

disappeared. In 50 million years, the gradient is practically uniform down to ͷͲ ݇݉. The 

disturbanceሺ∆ܶூ + ∆ܶூூሻ). tends to zero very slowly. Even after ͵ͲͲ ݉𝑖݈݈𝑖ݏݎܽ݁ݕ ݊ the 

temperature down to the depth of the base of the crust, ͵ͷ ݇݉, is still as high as ʹͲ percent of its 

initial value. 

 

 The term ∆ܶூூூ is given by equation 17 in terms of the function ߠሺݖ,  ሻ. The latterݐ

function represents the effect of the distortion of the substratum when the zero-temperature 

surface is at ࢠ = −∞, The term ∆ܶூூூ is shown in Figure 8 for ݏ =  and ݏ = ͳ͵ kilometer. 

The heat-flow equation 

ݐ�𝜕�  = 𝛼  (38)            ,ʹݖʹ��ܶʹ��

 

indicates that the rate of change of the temperature is approximately inversely proportional to the 

radius of curvature of the temperature profile, and that the sign of 𝜕ܶ ⁄ݐ��  is such that this profile 

tends to become straight. This equation of one-dimensional heat flow can be compared with the 

equation 

ܯ  = ܫܧ ௗమ௬ௗ௭మ ,          (39)  

 

of bending of a beam. The moment ܯ is in a certain way equivalent to 𝜕ܶ ⁄ݐ݀ . Also ܯ acts in a 

direction that would straighten up the beam and is proportional to the radius of curvature. 

 

The tendency of a temperature profile, in the absence of heat sources, is to become straight.  

Initially, the temperature distribution ∆ܶூூூ/ ଵܶ presents two bends, a sharp bend at the base of the 

crust and a smooth one in the substratum, The smooth bend in the substratum gradually 

straightens up, feeding heat to the sharp bend at the base of the crust. The substratum bend 

becomes straight later than that at the base of the crust because its straightening involves the 

change in temperature of a greater volume of material. In about ͷͲ × ͳͲ ݎܽ݁ݕ, the distribution 

becomes practically a straight line from the surface to more than ͻͲ ݇𝑖݈ݎ݁ݐ݁݉ depth (Figure 8), 

i.e., the surface gradient increases with time from zero to a maximum value. Afterward, the 

deficiency in the heat supply from the interior causes the gradient to decrease. The time at which 

the maximum gradient is readied can be determined by equation 19 by making  ݀/݀ݐ ሺ∆TIIIሻࢠ= = Ͳ, where by 

ݐ  = ଷସ ுሺଶ−ுሻ𝛼 ,                  (40) 

 

 If it is assumed that ܽ = Ͳ.ʹ͵ × ͳͲ−ܿ݉−ଵ  and 𝛼 = Ͳ.ͲͳͲ cmଶsec−ଵ, then ݐ = ͳͳ͵ ×ͳͲ yr for ܪ = ͵ͺ × ͳͲcm,and ݐ = ͳͶͳ × ͳͲ yr for ܪ = Ͷͷ × ͳͲହܿ݉. When ܽ is very large, 

i.e., when the deformation is limited to a narrow zone at the base of the crust, formula (40) re-

duces to 

ݐ  =  ଶ/Ͷ𝛼.                (41)ܪ͵

 



 

 

 

 
 

                       Figure 7 . Decay of Surface Disturbance ሺ∆𝑻ࡵ + ∆𝑻ࡵࡵሻ. In A, for = Ͳ , it has value 1 at  ݖ = ݇݉ ; in B, for ݐ = Ͳ, it has value 1 at z= ͳ͵ ݇݉. 

 



 

 

It gives ࢚ = Ͷͺ × ͳͲ yr for ܪ = Ͷͷ × ͳͲହܿ݉ and ࢚ = ͵Ͷ × ͳͲ yr for ܪ = ͵ͺ × ͳͲହ ܿ݉. 

Hence, even if the subsidence would form a sharp front at the base of the crust, the maximum 

gradient would be felt at the surface only after ͵ͷ × ͳͲ ݎݕ. 

 

 The three components  ∆ܶூ , ∆ܶூூ, and ∆ܶூூூ of the total deviation ∆ ܶ from the final 

steady state have been determined. Since the temperature variation which occurs after the 

subsidence is of interest, the initial state is taken as datum. Hence, what is wanted is 

 ∆𝑻 = |∆T_a ሺz, tሻ|  t =  ∆Taሺܢ, ሻݐ  −  ∆𝑻ܽሺݖ, Ͳሻ.                      (42) 

 

This variation is shown in Figure 12 for the subsidence of  and ͳ͵ ݇݉, but it will be discussed 

hereafter. 
 

Components of temperature deviation, when the heat is generated in the crust 

When the heat is generated in the crust, the subsidence produces a temperature deviation, from 

the final steady state, which is 

 ∆𝑻࢈ = −∆ ܶூሺݖ, ሻݐ − |∆ ܶூூሺݖ,  ሻ| ௧∞.             (43)ݐ

 

The term ∆ ܶூ represents the decay of the deviation from the initial steady state, and ∆ ܶூூ  

is the temperature build-up produced by the new radioactive-heat sources. The distribution of 

sources after the subsidence and the sedimentation is considered as the sum of the initial sources 

and of additional sources. Thus the initial steady state can be considered as being maintained by 

the initial sources. The additional sources consist of two slab distributions, as shown in Figure 5. 

The temperature deviations are expressed in terms of ܶʹ as unit, which is the ultimate temperature 

increase in the substratum. 

 

 For long times, it is enough to consider∆ ܶூூ, because the deviation of ∆ ܶூூ from its 

ultimate value varies less rapidly than the decay of ∆ ܶூ, namely as ݐ−ଵ/ଶ as agains ݐ−ଷ/ଶ.For long 

times an asymptotic value of ∆ ܶis obtained, namely 

 ∆ ܶ = − ௭√గ𝛼௧ ( ଶܶ௨ + ଶܶ௪),       (44) 

 

where ܶʹݎ݁ݑ
 and ܶʹ݈ݎ݁ݓ

 are the ଶܶ’s for the upper and lower radioactive slabs, respectively. The 

term ∆ ܶூ is given by 

 ∆ ܶூ =ଶܶ{𝑖ଵ ݂݁ܿݎ ሺݖ − ܪ − ሻଵʹ/ݏ − 𝑖ଵ ݂݁ܿݎ ሺݖ + ܪ + ܪሻଵሻ}/ʹሺʹ/ݏ + ሻଵʹ/ݏ − ଶܶ ݂݁ܿݎሺܪ ሻʹ/ݏ+ − ଶܶ{𝑖ଵ݂݁ܿݎሺݖ − ሻଵݏ − 𝑖ଵ݂݁ܿݎሺݖ + ሻଵݏ − 𝑖ଵ݂݁ܿݎ ሺݖ + ଵݏʹ/{ሻଵݏ + ଶܶ𝑖ଵ݁ݏ ݂ܿݎଵ,   (45) 

 

where 𝑖′ 
 erfc is the first integral of the error function,ሺݖ – ܪ − 𝐬/ʹሻଵ = ሺz − ܪ − ௦ଶሻ/ ሺ𝜶࢚ሻ/,etc. 

  

The decay of ∆ ܶூ is shown in Figure 9 for subsidences of  and ͳ͵ ݇݉. Initially,∆ ܶூ is a 

triangular temperature distribution which has value zero at ݖ = Ͳ, its maximum value at ݖ =  ,ݏ

and is zero at ݖ = ܪ + In ͷ .ʹ/ݏ  × ͳͲ ݎݕ the maximum value of ∆ ܶூ is reduced to less than 

one-third its initial value, and in ͷͲ × ͳͲ ݎݕ, it has practically disappeared. 

 



 

 

The term ∆ ܶூூ is the sum of two parts, one for each of the radioactive slabs which repre-

sent the change from the initial condition. The temperatures produced by each of these slabs are 

obtained from equations 27, 28, and 29. When the heat-source intensities in the sediments and in 

the crust are equal, i.e., ݍଵ =  ଶ, only the lower slab is left. Table 2 gives the dimensions of theݍ

slabs for the two values of the subsidence considered. 

 

 The temperature build-up produced by the radioactivity of the slabs is shown in Figures 

10 and 11. The linearity of the deviation from the steady state from about ͳͲͲ ݉𝑖݈݈𝑖ݏݎܽ݁ݕ ݊ 

justifies the use of the asymptotic formula for large ݐ. This has been used for ͳͲͲͲ, ʹͲͲͲ and ͵ͲͲͲ ݉𝑖݈݈𝑖ݏݎܽ݁ݕ ݊. 

 

 
 

Figure 8 . Decay op the Temperature Perturbation ∆𝑻ࡵࡵࡵ Produced by Deformation of the Substratum by a 

Rapid Subsidence A, for a subsidence of  ݇݉; B, for a subsidence of ͳ͵ ݇݉. 

 

Because of their relative proximity to the surface, the effect of the two upper slabs is felt 

rather rapidly at the surface. One million years is enough for the gradient at the surface to almost 

reach its steady-state value. In about ʹͲ × ͳͲ ݎݕ, the temperatures above these slabs have 

practically reached the steady state. Only after 1 million years is there any perceptible increase in 



 

 

the temperature at the depth of the base of the crust; even after ͷͲ × ͳͲ ݎݕ, this temperature is 

only half its steady-state value.  

 

Because of the greater depth of the two lower slabs, it takes longer for their effect to be 

felt at the surface. About ͷ × ͳͲ ݎݕ is required for a detectable increase of the surface gradient. 

After about ʹͲ × ͳͲ ݎݕ, the gradient is practically uniform between the surface and the top of 

the slab. But even after ͷͲ × ͳͲ ݎݕ, it is only slightly more than half its steady-state value, and 

still after ͵ͲͲ × ͳͲ ݎݕ,, the deviation from the steady state is significant. The components ∆ ܶூ 
and ∆ ܶூூ of the deviation ∆ ܶ from the final steady state have been obtained. To determine the 

variation with respect to the initial state, one takes instead. This variation is shown in Figure 13 

for the subsidences of  and ͳ͵ ݇݉. It will be discussed hereafter. 

 ∆𝑻࢈ = |∆𝑻࢈ሺࢠ , ࢚ሻ|࢚ = −∆𝑻ࡵ࢈ ሺࢠ, ሻ࢚ + ∆𝑻ࡵ࢈ ሺࢠ , ሻ + ∆𝑻(46)           ࡵࡵ࢈ 

 

 
 

Figure 9 . Decay of Temperature Distribution ∆𝑻࢈ࡵ.In A, it initially extends from the surface down to  ݇݉; in B, it initially extends from the surface down to ૡ.  ݇݉  

 



 

 

Discussion of rapid-subsidence assumsion 
 

The suitability of the rapid-subsidence model can be judged only if the order of 

magnitude of the subsidence velocity in actual basins is known. The only direct indication of sub-

sidence throughout geologic time at present is the thickness of sediments. Present-day rates of 

deposition are not suitable to estimate subsidence, because they are controlled by other factors 

besides rate of subsidence. For the Cenozoic—an era with a fairly complete record— the average 

rate of deposition has been estimated to be 0.67 kilometer per million years (Schuchert,1931, p. 

44). Because of erosion, compaction, and periods of no deposition, this rate is likely to be smaller 

than the subsidence velocity. Present rates of subsidence in some basins are larger than the figure 

mentioned. Kidwell and Hunt (1958), estimate that the average rate in Eastern Venezuela is 10 

kilometer per million years. Moore (1955) found that the present rate is 2.1 kilometer per million 

years. The subsidence during one orogenic cycle is equal to at least twice the thickness of the 

sediments which is later found in the basin. Thus, the subsidence velocity may be of the order of 

1.3 kilometer per million years. The subsidence of 6 kilometer would require about 5 million 

years, and that of 13 kilometer about 10 million years. 

 
Table 2.—Dimensions op Radioactive Slabs (In 106 cm) 

 

Dimension Subsidence of 6 kilometer Subsidence of 13 kilometer 

h0, upper slab 2 2 

h, upper slab 8 15 

H0, lower slab 32 32 

H, lower slab 38 45 

 

 The term 𝛼 𝜕ଶ ܶ ⁄ଶݖ݀  in the heat equation, equation 1, has been neglected in the 

consideration of the subsidence. The only change of temperature during rapid subsidence is pro-

duced by the displacement of the medium. The question is how large is the change due to 

diffusion, which occurs during the subsidence, in the initial steady state. This effect can be 

estimated by comparing it with the effect of diffusion upon the rapid-subsidence model after an 

interval of time equal to that required by the subsidence. In one case there is diffusion and 

subsidence, and in the other, first only subsidence and then only diffusion. 

 

 The surface perturbation is represented by the sum ሺ∆ܶூ + ∆ܶூூሻ in Figure 7. The surface 

gradient of ሺ∆ܶூ + ∆ܶூூሻhas lost 75 per cent of its initial value in 5 million years for the sub-

sidence of  ݇݉ and 62 per cent in ͳͲ ݉𝑖݈݈𝑖ݏݎܽ݁ݕ ݊ for the subsidence of ͳ͵ ݇݉. The times 

mentioned here are equal to the times required by the respective subsidences. The perturbations ሺ∆ܶூ + ∆ܶூூሻfor the subsidences of  and of ͳ͵ ݇݉, expressed in terms of ଶܶ,  become practically 

equal after 5 million years. These times are comparable to the times required by the subsidence. 

Thus, these two observations indicate that the surface gradient and the temperatures in the 

sedimentary layer given by the rapid-subsidence model are too low. But for the subsidence 

velocity considered herein, ͳ.͵ ݇݉ ݎ݁ ݉𝑖݈݈𝑖ݏݎܽ݁ݕ ݊, the discrepancy with respect to the rapid-

subsidence model disappears in about ͷ ݉𝑖݈݈𝑖ݏݎܽ݁ݕ ݊. 

 

In the model in which the heat comes from the deep interior, because of the deformation 

of the substratum, 𝜕ʹ ܶ ⁄ʹݖ݀ ≠0 in the substratum. The adjustment of this perturbation is shown in 

Figure 8 for the subsidences of 6 and 13 kilometer. This perturbation is practically unchanged in 

the zone of the substratum even after 5 and 10 million years for the 6 and 13 kilometer 

subsidence, respectively. Hence there is no appreciable error here because of the assumption of 

rapid subsidence. 



 

 

 
 

Figure 10. Temperature Build-up by Radioactive Material of Upper Slab(Time interval after subsidence in 

106 years) 

 

 However, the effect of rapid subsidence in the lower part of the crust is yet to be 

considered. If the subsidence had taken place gradually, instead of instantaneously; the 

temperature rise in the lower part of the crust would have been smaller than shown in Figure 8. 

This is because the thermal gradient in the substratum builds up gradually during the subsidence. 

In Figure 8A, which corresponds to the 6 kilometer subsidence, the area between the curves, for ݐ = ͷ × ͳͲ ݏݎܽ݁ݕ and for ࢚ =  Ͳ and which lies above the base of the crust is of interest. This 

area represents the heat conducted during 5million years from the substratum into the crust. After 

5 million years the heat escape at the surface is still negligible. It is easy to show, from equation 

15, that the excess gradient increases proportionally to the subsidence. Thus, its average value is 

half its ultimate value. Accordingly, the area referred to would be at most equal to half what is 

shown in Figure 8. Allowing for this factor, the error is greatest at the base of the crust, but even 

there it is not serious. For a subsidence of 6 kilometer occurring in 5 million years, the error on 

the temperature variation can be estimated to be less than 10 per cent of the ultimate temperature 

variation, and for the subsidence of 13 kilometer occurring in 10 million years to be less than 12 

per cent. 



 

 

When the heat is generated in the crust, the surface perturbation ∆ ܶூ and the temperature 

build-up ∆𝑻ࡵࡵ࢈ produced by the additional radioactive slabs must be considered. 

 

The peak value of ∆𝑻ࡵ࢈  is reduced in about 5 and 10 million years to 26 and 24 per cent, 

respectively, of its initial value for the subsidences of  and ͳ͵ ݇݉, respectively (Figure 9). 

Hence, this term cannot introduce too large an error even in the sedimentary layer, where it has its 

greatest value. As for ∆ ܶூூ, only the lower slab need be considered, since it can be assumed that ሺݍଵ— ଷሻݍ ≪  . The temperature build-up produced by the lower slab is shown in Figure 11 for

the subsidences of 6 and 13 kilometer. In 5 and 10 million years, respectively, the disturbance has 

barely reached the surface. Hence, for the subsidence velocity considered, ∆𝑻ࡵࡵ࢈ is quite suitable as 

given by the rapid-subsidence model. The rapid-subsidence assumption introduces practically no 

error in the substratum. In the lower part of the crust the maximum error is about 10 and about 12 

per cent for the subsidences of  and ͳ͵ ݇݉, respectively. If the subsidence velocity were of the 

order of ͳ.͵ ݇݉ ݎ݁ ݉𝑖݈݈𝑖ݏݎܽ݁ݕ ݊, the rapid-subsidence model would give too low 

temperatures in the sedimentary layer for the first ͷ ݉𝑖݈݈𝑖ݏݎܽ݁ݕ ݊. But after a time equal to that 

required for the subsidence, the rapid-subsidence model becomes more and more suitable. The 

finite subsidence velocity introduces an uncertainty in the time origin of the rapid-subsidence 

model. For the study of events which occur long after subsidence, the instantaneous assumption is 

adequate. Moreover, its effect is always unimportant in the lower part of the crust and substratum 

 

Temperature variation after subsidence of a basin 

 
 To determine the temperature variations produced by subsidence, two different models 

have been investigated. In model 1 the heat comes from the deep interior; in model 2, the heat is 

generated in the earth's crust. 

 

 Numerical calculations were performed for two cases; namely, when the subsidence is  

and ͳ͵ ݇݉. The results for the hypothesis that the heat comes from the deep interior are shown in 

Figure 12, and for the hypothesis that it is generated in the crust, in Figure 13. 

 

 A number of general observations can be made about these temperature variations after a 

subsidence. The temperature increases much more rapidly in the sediments than in the lower part 

of the crust. For instance, the temperature variations in the new layer of sediments, for the 

subsidence of  ݇𝑖݈ݎ݁ݐ݁݉, have reached 74 per cent of their ultimate values after ͷ ݉𝑖݈݈𝑖ݏݎܽ݁ݕ ݊ in both models, whereas at the base of the crust they have reached only 15 and 3 

percent in models 1 and 2, respectively. A similar observation can be made for the 13 kilometer 

subsidence. When the heat comes from the deep interior, there is, for a certain length of time, a 

zone of cooling in the substratum. For instance, after ʹͲ ݉𝑖݈݈𝑖ݏݎܽ݁ݕ ݊ the cooling at ͻͲ ݇݉ is 

about Ͳ.Ͳͺ 𝑻. After about 20 million years, the deviation from the final equilibrium condition in 

the crust is a reasonably linear function of the depth. For large times, the deviation, varies as ݐ−ଷ/ଶ
 when the heat comes from the interior and a  ݐ−ଵ/ଶ 

when it is generated in the crust. 

 

In general, the results for the two hypotheses about the origin of the heat are similar. In 

the sedimentary layer and upper part of the crust, they are practically the same up to about ͷ ݉𝑖݈݈𝑖ݏݎܽ݁ݕ ݊. But afterward the temperature increases more rapidly when the heat comes 

from the deep interior. The rates of increase differ more in the lower part of the crust. The 

temperature increases more rapidly in the model in which the heat comes from the deep interior. 

The contrast is even greater in the substratum. 

 



 

 

 The evolution of the temperature profiles which exist at any time after the subsidence is 

illustrated for the two models in Figure 14. The rapid subsidence and sedimentation sets a per-

turbation at the level of the original surface and another which extends into the substratum from 

the base of the crust. When the heat is generated in the crust and the subsidence is instantaneous, 

only the first of these perturbations has to be considered. The subsequent evolution of the 

temperature profile can be described as a gradual adjustment of this perturbation. The temperature 

adjustment progresses gradually from the presubsidence surface downward. When the heat comes 

from the deep interior, both perturbations are present, and the temperature increases more rapidly, 

particularly in the lower part of the crust. The times required for the adjustment of the tem-

perature profile are large enough to be of significance in geological processes. 

 

The increases of the temperature with time at the base of the sedimentary layer and at the 

base of the crust are shown in Figure 15 for the subsidences of  and ͳ͵ ݇݉. The continuous-line 

curves correspond to heat generated in the crust, and the broken-line curves to heat coming from 

the deep interior. Since heat may be derived from both these sources, the actual curves may he 

between these two curves. 

 

 An important feature of these curves is the large and rapid increase of temperature which 

takes place during the first 20 million years or so. Thereafter, the temperature increases at a much 

smaller rate. A similar observation is valid for any intermediate depth in the crust. The sharp bend 

in the temperature curves is more apparent in the case of heat generated in the crust and for the 

smaller subsidence. 

 

 The conditions represented by the continuous-line curves of Figure 15A, which cor-

respond to the subsidence of 6 kilometer and to the heat being generated in the crust, are probably 

nearer to the actual conditions in a basin than for the other cases considered here. 

The actual values in degrees centigrade of the temperature increase are obtained: by multiplying 

the relative variations, shown in Figures 12 and 13, by the factor ܶͳ or ܶʹ, as the case may be. If 

all the heat reaching the earth's surface is derived from the radioactivity of the crust, only  ܶʹ, 

which is given by equation 22, is needed. The quantities which enter in this formula are taken as: ݍ =  Ͷ × ͳͲ−ଵଷ cal cm−ଷ sec−ଵ, ܪ =  ͵ʹ × ͳͲହ cm, ݇ =  Ͳ.ͲͲ cgs, and 𝑖 =  × ͳͲହ ܿ݉ . The 

values thus obtained for T2  are indicated in the first line of Table 3. 

 

 The solution obtained for the temperature variations after subsidence is based on the 

assumption that the thermal conductivity is constant. However, it decreases with the temperature. 

If this decrease were taken into account, the temperature variations would be greater than those 

obtained. Assuming k = Ͳ.ͲͲͺ ܶ ܶ⁄  where ܶ = ʹͻͲ° ܭ., I have calculated the ultimate 

temperature at the base of the crust (Grossling, 1951, PhD thesis, London Univ.). The 

temperature increases which result for subsidences of  and ͳ͵ ݇𝑖݈ݎ݁ݐ݁݉ are shown in the 

second line of Table 3. Clearly, the decrease of conductivity with temperature leads to much 

greater temperature variations than would be the case if the conductivity were constant and equal 

to that of the surface rocks. However, in both cases the temperature variations are geologically 

significant. 

 

Significance of temperature variations 

 

Significance for lithification 

 

 The sediments of a basin gradually become lithified as a result of burial. This lithification 

depends mainly on the temperature and on the confining and differential stresses. Although it is 

not completely understood how the temperature affects the lithification, some experimental 



 

 

evidence indicates the importance of the temperature. Fairbairn (1950) found that the strength of 

quartz and quartzite decreases markedly at ͳͷͲ - ͵ͳͷ℃. Maxwell and Verrall (1954) showed 

experimentally that in sands the degree of grain shattering and orientation and the degree of 

cementation increase with the temperature. Their results suggest that certain temperature 

thresholds exist below which cementation does not occur. 

 

 As for the effect of the stresses, if the sediments accumulate on a horizontal subsiding 

basement and the deformation in the horizontal direction is zero, one of the principal stresses is 

vertical, and the other two are horizontal. The state of stress on a small cube of sediments can be 

resolved in a hydrostatic stress plus a deviatoric stress. The normal force acting on a small plane 

interface is partly taken by the solid matrix of the sediment and partly by the interstitial fluid. The 

load on the solid matrix, when expressed as normal stress over the total area of the interface, is 

called contact effective stress. This is the stress directly responsible for the compression of the 

solid matrix. The part of the hydrostatic stress taken up by the solid matrix may be called con-

fining stress. Obviously, the entire tangential stresses are supported by the solid matrix. 

 

 Most of the compaction of sediment occurs at shallow depths and consists of 

compression of the grain matrix and squeezing out of the interstitial fluids. This stage usually 

extends in the pressure range from Ͳ to about ͵ͲͲݏ𝑖. Because of viscous fluid-flow resistances, 

the fluid pressure is greater than the hydrostatic fluid pressure corresponding to the height of the 

fluid column. As the compaction progresses, the excess pressure is gradually transferred to the 

solid matrix. 

 

For this kind of consolidation, in a one-dimensional system, Terzaghi (1925) established the 

equation 

 𝜕𝜕௧ = ܿ 𝜕మ𝜕௭మ ,                (47) 

 

where,݁ = = 𝑖ݐܽݎ 𝑖݀ݒ  ܥ ,ݏ𝑖݈݀ݏ ݂ ݁݉ݑ݈ݒ/ݏ𝑖݀ݒ ݂ ݁݉ݑ݈ݒ  .ݐ𝑖ܿ𝑖݂݂݁݊݁ܿ ݊𝑖ݐ𝑖݈݀ܽݏ݊ܿ = ,݁ݏ݊݁ݏ 𝑖݈ܿܽݐℎ݁݉ܽݐܽ݉ ݊ܫ ݁݊ ℎ݁ݐ ݏܽ ݁݉ܽݏ ℎ݁ݐ ݏ𝑖 ݊𝑖ݐܽݑݍ݁ ݏℎ𝑖ݐ −݀𝑖݉݁݊ݏ𝑖݈ܽ݊ ℎ݁ܽݐ −  .(equation 38) ݊𝑖ݐܽݑݍ݁ ݓ݈݂

 

Furthermore, the coefficients in these two equations have the same dimension, namely ܮʹܶ−ͳ
.
 
Hence, if the dimensions and boundary conditions are the same,  the relative rates of 

change in the two processes depend on the relative value of these coefficients. For ordinary 

sediments, the consolidation coefficient is of the order of ሺ − ሻ × −ܿ݉ଶ ܿ݁ݏ−ଵ, whereas 

the thermal diffusivity is of the order of −ଶܿ݉ଶ ܿ݁ݏ−ଵ. Hence, up to depths of a few hundred 

feet, the adjustment of the stresses lags behind the adjustment of the temperature, so that the 

progress of the consolidation depends on the adjustment of these stresses. 

 

When the mere squeezing of the fluids has been nearly completed, the fluid pressure 

affects the subsequent compaction very little (Taylor and Merchant, 1940).Thereafter the grains 

begin to bend, crush, and shear. Resistance to further volume compression is provided mainly by 

the solid matrix. This stage may extend to about  ݏ𝑖. At larger pressures, a number of other 

things occur: melting at grain contacts, solidification at unstressed parts, stress-induced solution, 

and recrystallization. Hence, below depths of a few hundred feet, the lag in the adjustment of the 

confining stress is negligible. Both the stresses and the temperature of a certain  
 

 



 

 

 
 

Figure 11 . Temperature Build-up by Radioactive Material op Lower Slab (Time interval after subsidence 

in 106 years) 

 

portion of sediment increase with the subsidence. Below a few hundred feet the solid matrix is 

constantly subject to confining, stresses which correspond to the current depth. On the other hand, 

this investigation shows that the lag in the adjustment of the temperature is appreciable. Thus, the 

lithification may not be completed, at certain depths, because the temperature is still too far below 

its steady value. This seems to be corroborated by the existence of soft sediments at relatively 

great depths in basins such as the Gulf Coast This paper has shown that in the sedimentary layer, 

70-80 per cent of the ultimate temperature increase occurs within the first 15 million years after 

the subsidence. It seems likely therefore, that lithification is completed during that time interval. 

 

Significance for evolution of basins 

 
 A basin begins by subsidence of the earth's crust along an elongated trough. Sometime 

later comes a period of increased compression. This is the folding stage, in which the sediments 

and the crust are folded or fractured, or both. During this stage, probably no true rupture of the 

crustal material occurs, but rather the rate of shearing of the crustal rocks increases markedly. 

Under differential stresses, the crustal rocks can flow continuously, although at a very small rate. 

This flow can be described in terms of a solid viscosity. Whatever the ultimate cause of the 



 

 

crustal compression, the forces responsible for it work against the compressional strength of the 

crust. Therefore, crustal strength must be a relevant factor in the evolution of a basin. 
  

 
 

Figure 12 . Temperature Increase after Rapid Subsidence and Sedimentation when the Heat Comes from 

the Earth's Deep Interior.A, for a subsidence of  ݇𝑖݈ݎ݁ݐ݁݉ ; B, for a subsidence of  ݇𝑖݈ݎ݁ݐ݁݉. 

Thickness of crust is equal to  ݇𝑖݈ݎ݁ݐ݁݉, initial thickness of sediments is equal to  ݇𝑖݈ݎ݁ݐ݁݉. 

Deformation of substratum assumed to decrease to one-tenth at  ݇𝑖݈ݎ݁ݐ݁݉ below the crust. Time 

intervals after subsidence in ݏݎܽ݁ݕ. Ultimate temperature in the crust taken as unity. 

 

Of particular interest is whether the position of the lower boundary of the crust, the Mohorovicic 

discontinuity, depends on the temperature. The crustal viscosity appears to decrease markedly at 

the depth 

 

where the temperature reaches a certain value. The value of this temperature is not 

needed herein; it is sufficient to assume that it is the temperature at the base of an undisturbed 

crust. 



 

 

 The solid viscosity of the crustal material is assumed to decrease when the temperature 

reaches the value it has at the base of an undisturbed crust. In consequence, the compressional 

strength of the crust will vary as the thickness of the crust which is at temperature smaller than 

that value. The temperature increase, which occurs after the subsidence, progressively reduces the 

crustal strength by decreasing the crustal thickness. 

 

 
 

Figure 13 . Temperature Increase after Rapid Subsidence and Sedimentation when the Heat is Produced by 

the Radioactivity of the Crust and Sedimentary Layer. A, for a subsidence of 6 kilometer; B, for a 

subsidence of  ݇݉.Thickness of crust is equal to ͵Ͳ ݇݉, initial thickness of sediments is equal to ʹ  , =  Ultimate temperature increase in the crust taken as .࢙࢘ࢇࢋ࢟ ଶ. Time intervals after subsidence in ͳͲݍ

unity.  

Table 3 -ultimate temperature increase 𝑻 at base of crust 

 
 For subsidence  ×  ܿ݉ For subsidence  ×  ܿ݉ ݇ = .  cgs ݇ =  . ૡ T ܶ⁄  cgs 

° ૡૢ° 

° ૢૠ° 



 

 

 
 

Figure 14 . Evolution of the Temperature Profile after Rapid Subsidence and Sedimentation. In A, the heat 

is produced by the radioactivity of the crust and sediments; in B, the heat comes from the earth's deep 

interior.  

 At the start, there is assumed to be a homogeneous and isotropic crust, of constant thick-

ness, parallel to the geoids, and under no tectonic stress. Thus, one of the principal stresses is 

vertical and the other two are equal and horizontal. These stresses are assumed to vary linearly 

with depth. Whether the vertical stress is the maximum or the minimum or whether the three are 

equal depends on how the system came into being and also on the long-time strength of the 

crustal materials. If this stress system has acted for a long time, then the absolute values of the 

three stress differences are equal to or smaller than twice the yield shear stress. Tresca's 

maximum-shear yield criterion has been assumed for simplicity. 

 



 

 

 It is assumed now that a tectonic force, ܳ, per unit length is applied in the x direction 

(Figure 16). If the part of the crust subject to this force is a long belt, such as a basin, there is no 

strain relief in the direction of the long axis of the belt. For the tectonic force ܳ to produce plastic 

deformation in planes perpendicular to the axis, the difference of principal stresses in this plane 

must be equal or larger than twice the yield shear stress. 

 

 Smoluchowski (1909) has shown that the crust cannot be buckled elastically, because the 

buckling compressional stress is much larger than the elastic limit. When the maximum 

differential stress equals the yield limit, the crust thickens plastically. Vening-Meinesz and 

Heiskanen (1958, p. 326-343), following Bijlaard (1935; 1936), show that the crust buckles as a 

result. 

 
 

Figure 15 . Increase of Temperature after a Rapid Subsidence. A, for a subsidence of  ݇݉ ; B for a 

subsidence of  ݇݉. Continuous-line curves correspond to heat generated m the crust, and broken-line 

curves to heat coming from the deep interior. 

 

It will be supposed that a part of the crust has begun to down buckle; therefore, the tec-

tonic force Q is applied above the middle plane of the crust, as shown in Figure 16. Such a force 

is equivalent to a force of magnitude Q acting on the middle plane, plus a bending moment ܳܽ 

The stresses produced by the bending moment contribute to accentuate the bending of the crust, 

whereas the force on the middle 
 



 

 

 
 

Figure 16 . Stress Distribution in the Crust Produced by  compressional force 𝑸. 

 

 
 

Figure 17  Variation of the Crustal Strength Because of the Increase of Temperature which Follows a Rapid 

Subsidence A, for a subsidence of  ݇݉; B, for a subsidence of ͳ͵ ݇݉. 

 

 



 

 

plane merely thickens the crust without bending. The bending stress 𝝈 depth z is 

 𝜎 = ଵଶொሺ𝐻మ −௭ሻ𝐸ுయ ,               (48) 

 

where ܧ  .𝑖݊ Figure ͳ ݊ݓℎݏ ݏ𝑖݁ݐ𝑖ݐ݊ܽݑݍ ℎ݁ݐ ݁ݐ𝑖݃݊ܽݏ݁݀ ݏ݈ܾ݉ݕݏ ݎℎ݁ݐ ℎ݁ݐ ݀݊ܽ ݏݑ݈ݑ݀݉ ݏ′݃݊ݑܻ=

The deformation rate ∈̇x is 

࢞ ̇∋  = 𝝈ࣁ = 𝑸ࢇሺࡴ−ࢠሻ𝑬ࡴࣁ ,             (49) 

 

where ࣁ is the solid viscosity.The rate of the relative angular rotation, �̇�, of two sections a unit 

distance apart is 

 �̇� = ܳܽ(50)            .͵ܪߟܧ 

 

The progressive decrease of crustal strength, assuming that the strength varies as the inverse 

power of the thickness, is shown in Figure 17 for the subsidences of  and ͳ͵ ݇݉ and for the two 

hypotheses about the nature of the heat. The several curves of variation of the crustal strength 

with time exhibit, at a certain time, well-defined bends. The strength decreases relatively quickly 

up to about ʹͲ ݉𝑖݈݈𝑖ݏݎܽ݁ݕ ݊ and thereafter much more slowly. This observation is valid 

whether the heat comes from the deep interior or is generated in the crust. But the bend is more 

pronounced if the heat is generated in the crust. Moreover, the bends would be even more 

pronounced if the relative rate of angular rotation ݕ (equation 50) had been considered. This 

varies with the inverse third power of the thickness. 

 

 Another thermal effect of the subsidence which may affect the evolution of a basin is the 

temporary cooling of the substratum if the heat comes from the deep interior. During the 

subsidence, a given layer is displaced to greater depths, practically maintaining its temperature. 

Thereafter, its temperature actually decreases for a certain length of time because it conducts 

more heat to shallower layers than it receives from deeper ones. This zone of cooling in the 

substratum may effectively lock, for a certain time, the subsequent uplift of the crust. 

 
Conclusions 

 

 Subsidence and sedimentation produce, important temperature variations in the earth's 

outer layers. Similar results are obtained for the two hypotheses as to the origin of the heat: (1) 

heat comes from the deep interior, and (2) heat is generated in the crust. The variations are 

practically the same up to about 5 million years in the sedimentary layer and upper part of the 

crust. After about 5 million years, the increase becomes more rapid when the heat comes from the 

deep interior. But in the lower part of the crust, when the heat comes from the deep interior, the 

temperatures are built up more rapidly from the beginning. During the first ʹͲ ݉𝑖݈݈𝑖ݏݎܽ݁ݕ ݊ or 

so, the temperature increases rapidly; thereafter the rate of increase is much smaller. For large 

times, the deviation from the steady state is a linear function of the depth and varies as t
-3/2

 if the 

heat comes from the deep interior and as ݐ−ଵ/ଶ if it is generated in the crust. 

 



 

 

 The times required for the adjustment of the temperature are large enough to be of 

significance in geological processes. Thus, the temperature variations here determined should 

interest other investigators. 

 

 The gradual increase of temperature after subsidence should affect the lithification of the 

sediments and should decrease the crustal strength. Lithification is likely to be completed within 

the first ͳͷ ݉𝑖݈݈𝑖ݏݎܽ݁ݕ ݊ after the subsidence. The crustal strength decreases relatively quickly 

up to about ʹͲ ݉𝑖݈݈𝑖ݏݎܽ݁ݕ ݊ and thereafter much more slowly. This decrease of crustal strength 

after the subsiding stage in the evolution of a basin may control the time at which the folding 

stage begins, thus acting as a trigger effect. The folding stage would take place ͳͷ −ʹͲ ݉𝑖݈݈𝑖ݏݎܽ݁ݕ ݊ after the subsidence. When heat comes from the deep interior, the temperature 

in the substratum below a certain depth, which varies with the temperature, actually decreases for 

a time. This cooling may retard the subsequent uplift of the basin by increasing the solid viscosity 

of the substratum. 
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