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Divination of longitudinal River profile  
 

“Everything is determined, the beginning as well as the end, by forces over which we have no control. It is  
                  determined  for the insect, as well as for the star. Human beings, vegetables, or cosmic dust, we  

                                    all dance to a mysterious tune, intoned in the distance by an invisible piper.”  

 

― Albert Einstein 
 

Dr. N.L. Dongre  

 

 
 

The topographic evolution of the Nagduari Rift  is  tectonically active regions  arguably dominated by the 

rates and patterns of bedrock channel incision . Bedrock channels are a major component of mountainous 

drainage  and it appears that in tectonically active mountain ranges the elevation drop on bedrock channels 

comprises 80–90% of drainage  relief  

___________________________________________________________ 

 

Abstract— We  provides a concise review of three 

different derivations for the shapes of longitudinal 

elevation profiles in rivers. These are then briefly 

compared to an observed elevation profile for 

Beaver Creek, Kentucky, as extracted from a 1-

arcsecond DEM. 
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I. Introduction 

 

Longitudinal elevation profiles in rivers are generally concave down for a short distance 

from the drainage divide and are then concave up over the rest of the profile. This has generally 

been interpreted as due to a change in process dominance between essentially diffusive processes 

near divides and fluvial processes that dominate once discharge values become large enough. 

There have been many efforts to explain the shapes of these profiles from physical and empirical 

laws. This paper provides a concise review of three different derivations for the shapes of 

longitudinal profiles and then briefly compares them to observed profiles for  the Ngduari Rift  of 

Pachmarhi,India.. 

 

II. LONGITUDINAL PROFILES FROM AN IDEALIZED STEADY-STATE FLUVIAL LANDFORM 

MODEL 

 

To explore connections between function and form in fluvial landscapes, Peckham (1999, 

2003a, 2003b, 2003c) studied a partial differential equation intended as a simplified model for 

steady-state fluvial landforms. This equation is derived by combining three assumptions for the 

steady-state flow of water over a landscape: (1) mass conservation for water, (2) 2D flow 

direction given by the antigradient of the water's free surface and (3) a power-law relationship 

between unit-width discharge, q, and free surface slope, S. These can be expressed 

mathematically as: ሺͳሻ. ݍ = ℛ, ሺʹሻݍ = ݍ− ቀ௭ௌ ቁ  and ሺ͵ሻ |ݍ| = ݍ =  ଵܵ௬The third assumptionݍ

comes from combining two well-known empirical equations of downstream hydraulic geometry 

(Leopold et al., 1995): ܵ ∝ 𝒬𝑎 and 𝓌 ∝  ܽ ܾܳ, where 𝒬 =  is ݍ ,is volumetric discharge ݓݍ 

unit-width discharge ܵ = ܵሺࣲ, ࣳሻ = |௭| = ௫ଶݖ) + ௬ଶ)ଵ/ଶݖ  Ͳ is the slope at the point ሺࣲ, ࣳሻ, 
and w is channel width. This implies that ߛ =  ሺͳ —  ܾሻ/ߙ <  Ͳ, and ߛ  ≈ −ͳ for typical ߙ and ܾ values. Together, these equations lead to a nonlinear, 2nd-order PDE for the free water surface, ݖሺݔ,  :ሻݕ
 

.       ሺܵఊ−ଵ௭ሻ = −ܴ∗            (1) 

 

where, ܴ∗   =  ℛ ⁄ଵݍ  Here ܴ is a geomorphically effective rainrate (assumed steady and spatially 

uniform) and q1 is the unit-width discharge that corresponds to unit slope ሺܵ =  ͳ ሻ. ܴ is viewed 

as an extreme and geologically rare rainfall rate that produces flows with extreme shear stresses 

that can reshape the landscape. It is assumed to last long enough that shear stresses on the 

reshaped landscape drop to subcritical levels everywhere as a result of readjustment (e.g. wider 

channels, higher sinuosities, redistribution of roughness elements and formation of bed forms). 

Erosion caused by lesser rainfall rates is assumed to be insignificant by comparison. Sediment 

transport is not represented directly; the idea is to seek a landscape that has adjusted so that runoff 

rates less than or equal to ܴ are insufficient to exceed the critical shear stress required to initiate 

significant sediment transport. While Peckham (1999, 2003) obtained numerous results for the 2D 

version of this equation, the 1D version (taking ݖ =  :ሻሻ is given byݔሺݖ 

 

′(ሻݔሺ′ݖͳ−ߛܵ)                                                                                    = −ℛ            (2) 

 

Since ݖሺݔሻ is a decreasing function andܵሺݔሻ    Ͳ, we have ܵሺݔሻ  = — ݖ ,ሺݔሻ, so (2) simplifies to ሺܵఊሻ′ = ℛ  Integrating with respect to x and rearranging terms we have 

 

ሻݔሺ′ݖ      = −[ܵఊ + ℛሺݔ −  Ͳሻ]భം,            (3)ݔ



3 

 

where ܵ = —≠ ߛ In the case where ′ݖ− ͳ, a second integration yields the general solution: 

 

ሻݔሺݖ     = ݖ + ଵംோ {ܵఊ+ଵ − ℛ[ܵఊ + ℛሺݔ −  ఊ}                 ሺͶሻ[ ሻݔ

 

 

where ఊ = ሺߛ + ͳሻ/ߛ. Note that ఊ  Ͳ  for ߛ א [−ͳ,Ͳሻ and is positive otherwise. In the case 

where ߛ = −ͳ, the second integration of (3) gives: 

 

ሻݔሺݖ      = ݖ − ଵோ {ͳn[ͳ + ܴܵሺݔ −  Ͳሻ]}          (5)ݔ

 

In (4) and (5) we have ݖሺݔሻ = ݖ and ݖ′ ሺݔሻ = − ܵ. 
 

III. STEADY-STATE LONGITUDINAL PROFILES FROM A SEDIMENT TRANSPORT LAW AND 

HACK'S LAW 

 

A generalized and widely-used sediment transport law - which contains several other transport 

laws for specific choices of ݉ and ݊ − is given by 

 

      𝒬௦ =  𝒬ܵ.          (6)ܭ

 

The coefficient, ܭ, is usually called the erodibility and the exponents ݉ and ݊ are both typically 

taken to be between 1 and 2. Assuming that the long-term average runoff rate, ℛ is spatially 

uniform, we have 𝒬 =  ℛ𝐴, where 𝐴 is the total contributing area above a given river outlet. 

Assuming a steady, spatially uniform rate of tectonic uplift, ܷ, that exactly balances the rate of 

fluvial erosion (sometimes called "dynamic equilibrium"), we must similarly have 𝒬௦  =  ܷ𝐴. 

Combining these with (6), we therefore find 

 

      ܵ𝑒 = [ܷ/ሺܴܭሻ]ଵ/𝐴ሺଵ−ሻ/        (7) 

 

where ܵ𝑒 is the steady-state or equilibrium slope at any point and ܴ is a uniform runoff rate 

(Tucker and Bras, 1998). This agrees with an empirical law called Flint's Law (Flint, 1974), often 

written as ܵ =  ܿ𝐴−𝜃, where the exponent ߠ >  Ͳ is typically close to ͳ/ʹ. The prediction here is 

that ߠ =  ሺ݉ —  ͳሻ/݊, and ߠ >  Ͳ since  ݉ >  ͳ. As shown by Whipple and Tucker (1999), an 

empirical law known as Hack's Law, given by 

 

     𝐴 =  𝑘ℎݔℎ                       (8) 

 

can be inserted into (7) to express slope in terms of ݔ, the flow distance downstream from a 

drainage divide. The Hack exponent is typically close to ͵/ͷ =  Ͳ., so its reciprocal, h, is close 

to ͷ/͵ =  ͳ.. This results in the equation: ܵሺݔሻ  = — ሻݔሺ′ݖ  =  𝐶ݔ−ଵ, which can be integrated 

to get a functional form for the longitudinal profile. This gives 

 

ሻݔሺݖ     = ݖ} − ሺ𝐶 ⁄ ሻ(ࣲ − ࣲ),    if  ≠ Ͳݖ − 𝐶ͳnሺࣲ/ࣲሻ               if  ≠ Ͳ,           (9) 

 

where  =  ͳ — = ℎ and 𝐶ߠ   [ܷ/ሺܴܭሻ]ଵ/𝑘ℎ−𝜃. For ߠ = ͳ/ʹ and ℎ =  ͷ/͵ we have  = ͳ/. Note that ݖሺݔሻ = ሻݔሺ′ݖ ݀݊ܽ ݖ =  −ܵ, = — ,ܵ where ܵ =  𝐶௫−ଵ. These functional 

forms are somewhat similar to those predicted from the idealized steady-state fluvial landform 



4 

 

model, as given by (4) and (5). However, here  >  Ͳ and there, ఊ  <  Ͳ. Also, here we need ݔ ≠ Ͳ to avoid an infinite slope at ݔ. Despite these differences, their plots look very similar for 

typical values of their parameters. 

 

IV. LONGITUDINAL PROFILES FROM A SEDIMENT TRANSPORT LAW AND SIMILARITY 

SOLUTIONS 

 

Smith et al. (2000) developed a theory of graded streams that is based on conservation of 

sediment and the generalized sediment transport law 

 

௦ݍ       = 𝐶௫ംܵఋ           (10) 

 

where ݍ௦ is unit-width sediment discharge, ݔ is downstream distance from a divide, 𝐶 is a 

constant and ܵ = — < ݔݖ   Ͳ. While Smith et al. (2000) gave results for both (transport-limited) 

alluvial channel profiles and (detachment-limited) bedrock channel profiles, which obey different 

sediment conservation laws, here we restrict attention to alluvial channel profiles. For alluvial 

channels, conservation of sediment mass can be expressed as 

 

௧ݖ        = .  [—  ௭/ܵሻ]         (11)௦ ሺݍ

 

which in the 1D case, after inserting (10) becomes 

 

௧ݖ        = — 𝐶[ݔఊ  ሺ— ܼ௫ሻఋ]௫        (12) 

 

Similarity solutions to (12) are sought by inserting 

 

,ݔሺݖ       ሻݐ =  ܶ𝑎 ܨ(ݔ/𝜏ఉ)          (13) 

 

and solving the resulting ODE for ܨሺߟሻ, where ߟ = 𝜏ఉ is called the similarity variable and 𝜏/ݔ  = 𝜏 + 𝜔ݐ The resulting solutions have an initial elevation of ݖ  = ,ሺͲݖ  Ͳሻ at the upstream end 

where ݔ =  Ͳ and descend to ݖ =  Ͳ at the downstream end where X = X(t). An expression for 𝑋ሺݐሻ can be obtained by solving ݖሺ𝑋, ሻݐ  =  Ͳ for  𝑋. The initial x-position is denoted by 𝑋  = 𝑋ሺͲሻ. 
 

Not including a tectonic uplift term in (12) allows similarity solutions to be found. However, if ݖሺݔ, ,ݔሺݖ ሻ is a similarity solution to (12), then it is easy to check thatݐ ሻݐ  +  ∫ ܷ௧  ሺݐሻ݀ݐ is a 

solution to (12) with ܷ =  ܷሺݐሻ added to its right-hand side, where ܷ ሺݐሻ is a spatially uniform 

uplift rate. The resulting solution will no longer be a similarity solution. For steady 

uplift,ܷ ሺݐሻ  = ,ݔሺݖ , and the solution isݑ  ሻݐ  +  .ݐݑ 
Smith et al. (2000) showed how these similarity solutions for alluvial channel profiles can be 

divided into four classes, each with a different physical interpretation. In all cases, admissible 

solutions require ߜ >  ͳ and Ͳ < > ߛ  ߜ  + ͳ. these are briefly summarized in the following four 

sections. 

 

1) Fans and Pediments: 𝒂 + = ࢼ   . 
 

These solutions are characterized by zero net sediment loss, so that the mass of material 

under the profile does not change over time. They are always concave upwards and there is no net 

loss of material through the lower boundary, which advances downstream over time. Solutions 
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are interpreted as representing a spreading fan of material, as occurs in internal basins such as 

those in the Pachmarhi, India.. 

 
,ݔሺݖ    ሻݐ = ሻ{ͳݐሺ𝜔ܩݖ − [ሺݔ/𝑋ሻܩሺ𝜔ݐሻ]ଵ}ଶ           (14) 

 

ሻݐሺ𝜔ܩ     = ሺͳ + 𝜔ݐሻଵ/ሺఊ−ଶఋሻ            (15) 

 

                                                     𝜔 = −𝐶ሺߛ − ሻߜʹ ቀଵ−ఊ+ఋఋ−ଵ ቁఋ ௭బഃ−భ𝑋బభ−ം+ഃ            (16) 

 

where ଵ  = ሺͳ — + ߛ ,ߜ/ሻߜ  and ଶ  = — ߜሺ/ߜ   ͳሻ. Admissible solutions have (0 < ଵ < 1) and ଶ > 1. 

 

2) Hanging Valleys: ࢻ =  . 

 
These solutions are characterized by unconstrained sediment removal. The elevation at their 

upstream end is fixed for all time; that is, ݖሺͲ, ሻݐ  =  Slopes decrease over time if the profile is .2 > ߛ and convex upwards for 2 = ߛ linear for ,2 < ߛ Profiles are concave upwards for .ݐ  for allݖ

concave upwards and increase over time if it is convex or linear. 𝑋ሺ ݐሻ is a decreasing function, so 

the lower boundary moves upstream over time. Sediment discharge at the lower boundary 

remains constant over time. After a time,  =  𝜏 , profiles approach a vertical "cliff" at ݔ =  Ͳ. 

 

,ݔሺݖ      ሻݐ = [ͳݖ −  𝑋ሻ]          (17)/ݔሻሺݐሺ𝜔ܩ

 

ሻݐሺ𝜔ܩ      = ሺͳ + 𝜔ݐሻଵ/ሺଵ−ఋሻ                                           (18) 

 

     𝜔 = −𝐶ሺʹߜ − ሻߛ ቀଵ−ఊ+ఋఋ−ଵ ቁఋ ௭బഃ−భ𝑋బభ−ഃ+ം                                      (19)  

 

where  =  ሺͳ + ߜ  − − ߜሻ/ሺߛ   ͳሻ  >  Ͳ. 
 

3) Fixed Lower Boundaries and Base Levels: ࢼ =  . These solutions are applicable to rivers 

that drain to a large water body with a fixed elevation. The ݔ −position of their downstream end 

is fixed for all time; that is, 𝑋 =  𝑋 and ݖሺ𝑋, ሻݐ  =  Ͳ for all ݐ. The solutions are separable, so 

that ݖሺݔ, ሻݐ  =  ሻ, whereݐሻܶሺݔሺܨ 

     ܶሺݐሻ  =  [ሺߜ −  ͳሻ𝐶 ⋋ + ݐ   ͳ] భభ−6                             (20) 

 

௫[௫ሻఋܨ−ఊሺݔ]                                                 =⋋  (21)             .ܨ

 

Note that ⋋ >  Ͳ, ܶሺͲሻ  =  ͳ and ݖሺݔ, Ͳሻ  =  ሻ must be solvedݔሺܨ ሻ. However, the ODE forݔሺܨ 

numerically. Hypsometric curves for these solutions are time-invariant. 

 

4) Steady-State Profiles and Tectonic Motion: 𝒂 =  . These solutions are characterized by ݖ௧  =  is a spatially uniform rate of down cutting. That is, solutions are curves that ܮ where ,ܮ − 

rise or lower at a constant rate and they are always upward concave, with 

 

,ݔሺݖ     ሻݐ  =  [ሺͳݖ  +  𝜔ݐሻ  −  ሺݔ/𝑋ሻ]            (22) 

 

    𝜔 =  ሺ−𝐶/ݖሻሺݖ 𝑋−ሻఋ <  Ͳ          (23) 
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where  =  ͳ/ߚ =  ሺͳ + − ߜ  > and Ͳ ߜ/ሻߛ  >    ͳ. When the effect of steady, uniform 

uplift is included by adding ݑݐ (as explained previously), the terms ݑݐ and ݖ 𝜔ݐ can be 

grouped, ݖ௧  = = ܮ −  ݑ   +  and the result is still a similarity solution. In the special case ݐ 𝜔ݖ 

where ݑ = −𝜔 ݖ , we have ܮ =  Ͳ and the profile is a steady-state solution. This is a type of 

dynamic equilibrium, as discussed earlier.  

 

V. FITTING CURVES TO LONGITUDINAL PROFILES  
 

River Tools 4.1 is a software toolkit for terrain analysis. It includes tools for extracting 

longitudinal elevation profiles from DEMs and finding best-fit parameters for a variety of 

functional forms using nonlinear least-squares regression. Downstream profiles from any cell in 

the DEM can be extracted, in addition to upstream or main channel profiles. The latter are 

defined by repeatedly moving upstream toward the D8 neighbor cell with the largest total 

contributing area until reaching a drainage divide. Figure 1 shows the best fit of equation (4) to 

the main channel profile for  Pachmarhi ,India.. This function provides the smallest standard error 

of any of those tested ሺ𝜖 =  Ͷ.ͷͷሻ, with ߛ =  −0.70 and ܴ∗  = Ͳ.ͲͲ͵ͷ. Note that ݔ  =  Ͳ, ݖ  = ͺ.͵͵ and So = 0.462 were held fixed. If we take ݍͳ =  Ͳ.ͲͲ [݉ଶʹݏ] ሺLeopold et al., 1995), 

this implies ܴ =  ͺ.ʹ [mmph]. This is a very large, but not unrealistic value. A rate of 435 

[mmph] was sustained for 42 minutes in  the  Pachmarhi.  This suggests a method for deducing 

the magnitude of landscape-shaping rainfall events from elevation data. 

 

Figure. 1.  Best fit of (4) to the main channel profile of Beaver Creek, KY. 

 

Figure 2 shows the best fit of the power-law (9) to the main channel profile for  the Nagduari 

Rift.. This curve has  =  Ͳ.ͳ͵͵, 𝐶 =  ͳͶ.ͳ (ݔ and ݖ again fixed). The standard error, 𝜖 =  ͳͷ.ͻ͵, is 3.5 times larger. The best fit of the power-law (22) is identical, since ݔ =  Ͳ, with 

the same p and e (steady case). An exponential curve constrained to go through (ݔݖ) provides 

an extremely poor fit (not shown), with 𝜖 =  ͳʹ͵.͵͵. An unconstrained, 3-parameter exponential 

curve, also poor, has 𝜖 = 15.49. 
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Figure. 2. Best fit of power-laws (9) and (22) to the main channel profile of  the Nagduari Rift. Standard 

error = 15.93 and  =  Ͳ.ͳ͵͵. 
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